首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨双环醇(bicyclol)对超氧阴离子(O2)诱导的血管舒张功能损伤的影响。方法:采用离体器官灌流技术,观察bicyclol对离体大鼠胸主动脉环张力的影响。采用焦酚(O2的供体)建立O2损伤模型,观察bicyclol预孵育对氧化应激损伤后血管内皮依赖性舒张功能的改善作用。结果:bicyclol(10-8~10-5mol/L)对由苯肾上腺素预收缩的内皮完整主动脉环产生舒张作用,该作用可被NO合酶抑制剂L-NAME和环氧化酶抑制剂吲哚美辛阻断。500μmol/L焦酚可引起乙酰胆碱诱导的主动脉环内皮依赖性舒张反应减弱,bicyclol(10-5mol/L)预孵育45 min可减轻焦酚的损伤作用。对于吲哚美辛处理的主动脉环,bicyclol(10-5mol/L)可抑制焦酚所致的血管舒张反应降低,但这一效应未见于L-NAME处理的主动脉环。结论:bicyclol具有内皮依赖性舒血管作用,并能对抗O2引起的血管舒张功能损伤,该作用通过NO途径介导。  相似文献   

2.
Obesity is associated with marked increases in plasma leptin concentration, and hyperleptinemia is an independent risk factor for coronary artery disease. As a result, the purpose of this investigation was to test the following hypotheses: 1) leptin receptors are expressed in coronary endothelial cells; and 2) hyperleptinemia induces coronary endothelial dysfunction. RT-PCR analysis revealed that the leptin receptor gene is expressed in canine coronary arteries and human coronary endothelium. Furthermore, immunocytochemistry demonstrated that the long-form leptin receptor protein (ObRb) is present in human coronary endothelium. The functional effects of leptin were determined using pressurized coronary arterioles (<130 microm) isolated from Wistar rats, Zucker rats, and mongrel dogs. Leptin induced pharmacological vasodilation that was abolished by denudation and the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester and was absent in obese Zucker rats. Intracoronary leptin dose-response experiments were conducted in anesthetized dogs. Normal and obese concentrations of leptin (0.1-3.0 microg/min ic) did not significantly change coronary blood flow or myocardial oxygen consumption; however, obese concentrations of leptin significantly attenuated the dilation to graded intracoronary doses of acetylcholine (0.3-30.0 microg/min). Additional experiments were performed in canine coronary rings, and relaxation to acetylcholine (6.25 nmol/l-6.25 micromol/l) was significantly attenuated by obese concentrations of leptin (625 pmol/l) but not by physiological concentrations of leptin (250 pmol/l). The major findings of this investigation were as follows: 1) the ObRb is present in coronary arteries and coupled to pharmacological, nitric oxide-dependent vasodilation; and 2) hyperleptinemia produces significant coronary endothelial dysfunction.  相似文献   

3.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

4.
The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and in human primary chondrocytes. This study indicates that leptin plays a proinflammatory role, in synergy with IL-1, by inducing NOS type II through a signalling pathway that involves JAK2, PI3K, MEK-1 and p38 kinase.  相似文献   

5.
Hyperleptinemia accompanying obesity affects endothelial nitric oxide (NO) and is a serious factor for vascular disorders. NO, superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) nanosensors were placed near the surface (5+/-2 microm) of a single human umbilical vein endothelial cell (HUVEC) exposed to leptin or aortic endothelium of obese C57BL/6J mice, and concentrations of calcium ionophore (CaI)-stimulated NO, O(2)(-), ONOO(-) were recorded. Endothelial NO synthase (eNOS) expression and L-arginine concentrations in HUVEC and aortic endothelium were measured. Leptin did not directly stimulate NO, O(2)(-), or ONOO(-) release from HUVEC. However, a 12-h exposure of HUVEC to leptin increased eNOS expression and CaI-stimulated NO (625+/-30 vs. 500+/-24 nmol/l control) and dramatically increased cytotoxic O(2)(-) and ONOO(-) levels. The [NO]-to-[ONOO(-)] ratio ([NO]/[ONOO(-)]) decreased from 2.0+/-0.1 in normal to 1.30+/-0.1 in leptin-induced dysfunctional endothelium. In obese mice, a 2.5-fold increase in leptin concentration coincided with 100% increase in eNOS and about 30% decrease in intracellular L-arginine. The increased eNOS expression and a reduced l-arginine content led to eNOS uncoupling, a reduction in bioavailable NO (250+/-10 vs. 420+/-12 nmol/l control), and an elevated concentration of O(2)(-) (240%) and ONOO(-) (70%). L-Arginine and sepiapterin supplementation reversed eNOS uncoupling and partially restored [NO]/[ONOO(-)] balance in obese mice. In obesity, leptin increases eNOS expression and decreases intracellular l-arginine, resulting in eNOS an uncoupling and depletion of endothelial NO and an increase of cytotoxic ONOO(-). Hyperleptinemia triggers an endothelial NO/ONOO(-) imbalance characteristic of dysfunctional endothelium observed in other vascular disorders, i.e., atherosclerosis and diabetes.  相似文献   

6.
Wong KL  Chan P  Yang HY  Hsu FL  Liu IM  Cheng YW  Cheng JT 《Life sciences》2004,74(19):2379-2387
Isosteviol is a derivative of stevioside, a constituent of Stevia rebaudiana, which is commonly used as a noncaloric sugar substitute in Japan and Brazil. In the present study, the role of potassium channels in the vasodilator effect of isosteviol was investigated using potassium channel blockers on isosteviol-induced relaxation of isolated aortic rings prepared from Wistar rats. Isosteviol dose-dependently relaxed the vasopressin (10(-8) M)-induced vasoconstriction in isolated aortic rings with or without endothelium. However, in the presence of potassium chloride (3x10(-2) M), the vasodilator effect of isosteviol on arterial strips disappeared. Only the inhibitors specific for the ATP-sensitive potassium (K(ATP)) channel or small conductance calcium-activated potassium (SK(Ca)) channel inhibited the vasodilator effect of isosteviol in isolated aortic rings contracted with 10(-8) M vasopressin. Also; since the isosteviol-induced relaxation was unchanged by methylene blue, a role of nitric oxide and/or endothelium in the vasodilatation produced by isosteviol could be ruled out. The obtained results indicated that vasodilatation induced by isosteviol is related to the opening of SK(Ca) and K(ATP) channels.  相似文献   

7.
Ay I  Tuncer M 《Life sciences》2006,79(9):877-882
We investigated the nature and signaling pathways of endothelium- and sensory-nerve ending-derived substances involved in acetylcholine-induced vasodilation in rat isolated perfused kidney. Endothelial denudation by Triton X-100 (0.2%, 0.1 ml) or depletion of afferent nerve endings by capsaicin (10(-6) mol/l) attenuated acetylcholine-induced vasodilation. When these two agents were administered together, the response to acetylcholine was completely inhibited. CGRP1 receptor blocker CGRP 8-37 (10(-7) mol/l) and adenosine A(2) receptor antagonist ZM 241 385 (10(-7) mol/l) inhibited acetylcholine-induced dilation. When indomethacin (10(-5) mol/l), a cyclooxygenase inhibitor, l-NOARG (10(-4) mol/l), a nitric oxide (NO) synthase inhibitor, and potassium chloride (30 mmol/l), to test EDHF response, were perfused simultaneously, the inhibition was greater than that was observed with each agent alone. Guanylate cyclase inhibitor ODQ (10(-5) mol/l) or protein kinase A inhibitor KT 5720 (5x10(-7) mol/l) inhibited acetylcholine-induced dilation. Gap junction uncoupler 18alpha-glycyrrhetinic acid (10(-4) mol/l) caused an uncontrollable increase in basal perfusion pressure making it impossible to test against acetylcholine-induced dilation. Our data suggest that NO, prostanoids, EDHF, and CGRP released from vascular endothelium and afferent nerve endings participate in acetylcholine-induced vasodilation and their signal transduction molecules include protein kinase A and guanylate cyclase.  相似文献   

8.
Leptin produces effects in central nervous system and peripheral tissues via its specific receptors. Leptin also stimulates nitric oxide release in a concentration-dependent manner. In this study, our aim was to test the hypothesis that whether leptin has a modulatory role on endothelium or smooth muscle function in streptozotocin (STZ)-induced diabetic rats. Wistar-Albino rats were divided into four groups: 1 – Control, 2 – Diabetic, 3 – Control + leptin and 4 – Diabetic + leptin. Experimental diabetes was produced by intraperitoneal injection of a single dose of STZ (55 mg/kg). Diabetes was determined by increased fasting blood glucose level on the 7th day of the experiment. Leptin (0.1 mg/kg/day) was administered intraperitoneally for 5 days. At the end of the 5th day, thoracic aortas were isolated and phenylephrine (Phe)-induced contractions and acetylcholine (ACh)-induced relaxations of each group were estimated. In diabetic rats, Phe-induced contractility was increased (p < 0.05). Leptin pre-treatment increased the Phe-induced contractility significantly in aortic rings obtained from diabetic rats (p < 0.05). In normal rats, leptin administration produced only a slight and non-significant increase in Phe-induced contractions. Although the relaxant responses were decreased in diabetic rats, leptin administration enhanced the ACh-induced relaxation in both normal and diabetic animals significantly. As a conclusion; chronic leptin pre-treatment caused a significant increase both in Phe-induced contractions and ACh-induced Endothelial-Derived Relaxing Factor (EDRF)/Nitric oxide-mediated relaxations in the aortic rings isolated from streptozotocin-induced diabetic rats. This peptide hormone caused a significant increase in the relaxations obtained by ACh while not inducing a significant alteration in the contractile effect of Phe in control rats.  相似文献   

9.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

10.
Our previous ex vivo and in vivo studies reported that expression of the recombinant endothelial nitric oxide (NO) synthase (eNOS) gene in adventitial fibroblasts recovers NO production in arteries without endothelium in response to bradykinin. The present study was designed to characterize subtypes of bradykinin receptors on adventitial fibroblasts coupled to the activation of recombinant eNOS. Endothelium-denuded segments of canine basilar arteries were transduced with beta-galactosidase (beta-Gal) gene or eNOS gene ex vivo, using a replication-defective adenoviral vector (10(10) plaque-forming units/ml) for 30 min at 37 degrees C. Twenty-four hours later, isometric force recording or cGMP measurement was carried out. B(1) bradykinin receptor agonist (des-Arg(9)-bradykinin, 10(-10)-10(-8) mol/l) did not significantly affect vascular tone in control or beta-Gal gene-transduced canine basilar arteries without endothelium. In contrast, this agonist caused concentration-dependent relaxations in recombinant eNOS gene-transduced arteries without endothelium. Relaxations to B(1) receptor agonist in the eNOS arteries were abolished by B(1) receptor antagonist (des-Arg(9)-[Leu(8)]bradykinin, 6 x 10(-9) mol/l) but not by B(2) receptor antagonist (Hoe-140, 5 x 10(-8) mol/l). Bradykinin did not significantly alter vascular tone in control or beta-gal arteries without endothelium, whereas this peptide (10(-11)-10(-8) mol/l) induced concentration-dependent relaxations, as well as an increase in cGMP formation in endothelium-denuded eNOS-transduced arteries. Stimulatory effects of bradykinin were prevented in the presence of a B(2) receptor antagonist but not in the presence of a B(1) receptor antagonist. B(1) and B(2) receptor antagonists had no effect on relaxations to substance P, confirming the selectivity of the compounds. Our results suggest that B(1) and B(2) bradykinin receptors are coupled to activation of recombinant eNOS expressed in adventitial fibroblasts.  相似文献   

11.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   

12.
Apart from controlling energy balance, leptin, a peptide hormone secreted by white adipose tissue, is also involved in the regulation of cardiovascular function. Previous studies have documented that leptin stimulates natriuresis and nitric oxide (NO) production, but the mechanism of these effects is incompletely elucidated. We examined whether phosphoinositide 3-kinase (PI3K) and its downstream effector, protein kinase B/Akt are involved in acute natriuretic and NO-mimetic effects of leptin in anaesthetized rats. Leptin (1 mg/kg i.v.) induced a marked increase in natriuresis and this effect was abolished by pretreatment with either wortmannin (15 μg/kg) or LY294002 (0.6 mg/kg), two structurally different PI3K inhibitors. Moreover, leptin increased plasma concentration and urinary excretion of NO metabolites, nitrites + nitrates (NOx), and of NO second messenger, cyclic GMP. In addition, leptin increased NOx and cGMP in aortic tissue. The stimulatory effect of leptin on NOx and cGMP was prevented by PKB/Akt inhibitor, triciribine, but not by either wortmannin or LY294002. Triciribine had no effect on leptin-induced natriuresis. Leptin stimulated Akt phosphorylation at Ser473 in aortic tissue but not in the kidney. These results suggest that leptin-induced natriuresis is mediated by PI3K but not Akt, whereas NO-mimetic effect of leptin results from PI3K-independent stimulation of Akt.  相似文献   

13.
The vasorelaxant effects by endothelin-1 (ET-1) and endothelin-3 (ET-3), and their mechanisms of action were studied in isolated porcine pulmonary arterial strips. ET-1 and ET-3 dose-dependently (10(-9) - 10(-8) M) relaxed vascular strips precontracted with norepinephrine only in the presence of endothelium. The maximal vasorelaxant effect by ET-1 was about 70% of that by ET-3. The ET-1- and ET-3- induced vasorelaxation was blocked by NG-nitro-L-arginine, an inhibitor of nitric oxide synthesis, and methylene blue, an inhibitor of soluble guanylate cyclase. The present data suggest that vascular smooth muscle relaxation induced by ET-1 and ET-3 is mainly ascribed to synthesis and release of nitric oxide from L-arginine in endothelium.  相似文献   

14.
To test the hypothesis that mechanically stretched arteries relax to endothelium-derived vasodilators, we challenged endothelium-intact dog femoral artery rings stretched from 1 to 16 g total initial tension (active force and passive elastic) with 10(-6) M acetylcholine (ACh), an endothelium-dependent dilator. The relaxation to 10(-6) M sodium nitroprusside (SNP), an endothelium-independent dilator, increased with the total initial tension. The relaxation to ACh averaged approximately 65% of the relaxation to SNP at total initial tensions of 4 to 16 g. To determine the nature of the endothelial-derived products involved, we compared the ACh-induced relaxation of stretched rings (6.5 +/- 0.2 g total initial tension) with rings chemically contracted with phenylephrine (Phe, 10(-7) to 10(-5) M) (6.5 +/- 0.3 g total initial tension). ACh-induced relaxation was evaluated before and after the inhibition of the synthesis of eicosanoids [cyclooxygenase (10(-5) M indomethacin) and lipoxygenase (10(-5) M nordihydroguariaretic acid)] and nitric oxide [nitric oxide synthase (10(-5) M Nw-nitro-L-arginine)]. The contribution of endothelium-derived hyperpolarizing factor (EDHF) was identified by blocking calcium-activated potassium channels (10(-8) M iberiotoxin). SNP (10(-6) M) relaxed stretched rings by 1.7 +/- 0.1 g and chemically-activated rings by 4.8 +/- 0.2 g. ACh relaxed stretched rings to 73 +/- 3% of the SNP relaxation and this was only attenuated in the presence of iberiotoxin. ACh relaxed Phe-activated rings to 60 +/- 3% of the SNP relaxation. This relaxation was attenuated by inhibition of the synthesis of nitric oxide and (or) eicosanoids. Therefore, ACh relaxed stretched rings through the release of EDHF whereas the relaxation of chemically activated rings to ACh involved multiple endothelium-derived vasodilators.  相似文献   

15.
Although the endothelium co-generates both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), the relative contribution from each vasodilator is not clear. In studies where the endothelium is stimulated acutely, EDHF responses predominate in small arteries. However, the temporal relationship between endothelial-derived NO and EDHF over more prolonged periods is unclear but of major physiological importance. Here we have used a classical pharmacological approach to show that EDHF is released transiently compared with NO. Acetylcholine (3 x 10(-6) mol/l) dilated second- and/or third-order mesenteric arteries for prolonged periods of up to 1 h, an effect that was reversed fully and immediately by the subsequent addition of L-NAME (10(-3) mol/l) but not TRAM-34 (10(-6) mol/l) plus apamin (5 x 10(-7) mol/l). When vessels were pretreated with L-NAME, acetylcholine induced relatively transient dilator responses (declining over approximately 5 min), and vessels were sensitive to TRAM-34 plus apamin. When measured in parallel, the dilator effects of acetylcholine outlasted the smooth muscle hyperpolarization. However, in the presence of L-NAME, vasodilatation and hyperpolarization followed an identical time course. In vessels from NOSIII(-/-) mice, acetylcholine induced small but detectable dilator responses that were transient in duration and blocked by TRAM-34 plus apamin. EDHF responses in these mouse arteries were inhibited by an intracellular calcium blocker, TMB-8, and the phospholipase A(2) inhibitor AACOCF(3), suggesting a role for lipid metabolites. These data show for the first time that EDHF is released transiently, whereas endothelial-derived NO is released in a sustained manner.  相似文献   

16.
The secretion of gonadotrophins from anterior pituitary cells can be modulated by leptin and signals originating from the immune system, among others, by nitric oxide (NO). There are some studies that have demonstrated a role for leptin and NO in the regulation of FSH in rodents, however, no similar data are available in regards to ewes. Therefore, the objective of the present study was to analyse the leptin effect on GnRH-induced FSH secretion from the ovine anterior pituitary cells in vitro. Additionally, the influence of leptin on NO release and its role in the GnRH and leptin-modulated secretion of FSH from pituitary gland of ewes was investigated. The obtained results show that the influence of leptin on FSH secretion is biphasic. Leptin in concentration 10(-8) and 10(-7) M/l significantly enhances, whereas 10(-6) and 10(-5) M/l of leptin suppresses FSH secretion from the pituitary cells in comparison to the control. The secretion of FSH and NO release under the influence of leptin are in very high positive correlation (r=0.77). The inhibition of NO synthesis with L-NAME., instead, disables leptin from the stimulation of FSH secretion.  相似文献   

17.
Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.  相似文献   

18.
Meng AH  Ling YL  Wang DH  Gu ZY  Li SJ  Zhu TN 《生理学报》2001,53(6):478-482
为探讨八肽胆囊收缩素(CCK-8)缓解内毒素休克时肺动脉高压的作用机制,应用离体血管环张力测定技术及一氧化氮合酶(NOS)检测方法,观察了一氧化氮(NO)在CCK-8减轻肿瘤坏死因子-α(tumor necrosis factor-al-pha,TNF-α)的抑制肺动脉内皮依赖性舒张反应中的作用。结果显示:TNF-α(4000U/ml)孵育2h时,肺动脉对10^-6mol/L苯肾上腺素(phenylephrine,PE)和10^-6mol/L乙酰胆碱(ACh)的收缩反应及内皮依赖性舒张反应均无明显变化。TNF-α孵育7或14h时,肺动脉对10^-6mol/L ACh介导的内皮依赖性舒张反应降低,CCK-8(0.5μg/ml)可逆转TNF-α的上述作用,CCK-8本身对正常肺动脉反应性无明显影响。TNF-α、CCK-8对PE引起的收缩反应无显著影响。L-精氨酸(L-Arg)可使TNF-α7h内皮依赖性舒张作用恢复。氨基胍(AG)不影响各组肺动脉对10^-6mol/L ACh的内皮依赖性舒张反应,而使TNF-α组肺动脉环对10^-6mol/L PE的收缩反应显著增加。L-硝基精氨酸(L-NNA)使各组肺动脉环对10^-6mol/L ACh反应由舒张变为收缩,对10^-6mol/L PE的收缩反应显著增强。检测7h各组NOS活性,TNF-α组、TNF-α+CCK-8组均较对照组显著增加,CCK-8组与对照组比较无显著差异。上述结果提示,CCK-8可逆转TNF-α对内皮依赖性舒张反应的抑制作用,此作用可能与NO有关。  相似文献   

19.
Experiments were undertaken to investigate the existence of inhibitory nonadrenergic, noncholinergic (i-NANC) nerve activity by using in vitro functional and immunohistochemical techniques in rat main pulmonary arterial rings. Vessels precontracted with phenylephrine (3 microM) relaxed in response to electrical field stimulation (EFS) (50 V, 0.2 ms, 0.1-10 Hz for 5 s) in the presence of atropine (1 microM) and guanethidine (1 microM). Tetrodotoxin (0.3 microM) abolished this response, indicating that it is neuronal in origin. l-NAME (30 microM), methylene blue (10 microM), and removal of endothelium significantly reduced the EFS-induced relaxations. The inhibitory action of l-NAME was completely reversed by l-arginine (1 mM) but not by d-arginine (1 mM). Moreover l-arginine alone potentiated the magnitude of the relaxations elicited by EFS. On the other hand, immunohistochemical work clearly demonstrated the existence of neuronal nitric oxide synthase in the pulmonary artery vessel wall. All these results are consistent with the suggestion that nitric oxide is the likely mediator of this vasodilatation. However, the incomplete blockade of the responses by l-NAME gives evidence of an additional inhibitory NANC neurotransmitter(s) mediating the residual relaxation, which requires further experiments to clarify its nature.  相似文献   

20.
Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号