首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
The ability of Clostridium perfringens type A to produce an enterotoxin active in human food poisoning has been shown to be directly related to the ability of the organism to sporulate. Enterotoxin was produced only in a sporulation medium and not in a growth medium in which sporulation was repressed. Mutants with an altered ability to sporulate were isolated from an sp(+) ent(+) strain either as spontaneous mutants or after mutagenesis with acridine orange or nitrosoguanidine. All sp(0) (-) mutants were ent(-). Except for one isolate, these mutants were not disturbed in other toxic functions characteristic of the wild type and unrelated to sporulation. A total of four of seven osp(0) mutants retained the ability to produce detectable levels of enterotoxin. None of the ent(-) mutants produced gene products serologically homologous to enterotoxin. A total of three sp(-) mutants, blocked at intermediate stages of sporulation, produced enterotoxin. Of these mutants, one was blocked at stage III, one probably at late stage IV, and one probably at stage V. A total of three sp(+) revertants isolated from an sp(-) ent(-) mutant regained not only the ability to sporulate but also the ability to produce enterotoxin. The enterotoxin appears to be a sporulation-specific gene product; however, the function of the enterotoxin in sporulation is unknown.  相似文献   

2.
Mutants of Aspergillus nidulans defective in conidiation (asexual sporulation) can be classified according to whether they are blocked before or after induction of conidiation. Mutants blocked before induction (preinduction mutants) appear to be unable to respond to the inducing stimulus and thus are defective in one of the earliest events in the sporulation process. Three preinduction mutants have been isolated and characterized. Each was found to exhibit the same pleiotropic phenotype: they also were defective in sexual sporulation and secreted a set of phenolic metabolites at a level much higher than did wild type or mutants blocked at later stages of conidiation. One of the metabolites has been identified as the antibiotic diorcinal (3,3'-dihydroxy-5,5'-dimethyldiphenyl ether) which is known to be involved in the synthesis of certain farnesyl phenols of unknown function. These results suggest that preinduction mutants are blocked in a phenolic metabolic pathway, one or more product of which participates in the initiation of sporulation.  相似文献   

3.
A considerable amount of Mn2+-stimulated DNAase (deoxyribonuclease) activity is released by Bacillus subtilis 168 during sporulation in a glucose-deficient medium; much smaller amounts are released during starvation for phosphate or nitrogen. Protein synthesis is required. Two forms of evidence are presented that production of the DNAase is associated with events late in stage II of sporulation. 19 Thymidine starvation, which inhibits the biochemical events associated with sporulation, also inhibits release of the DNAase. 2. Several asporogenous mutants blocked at stage II or earlier and unable to produce alkaline phosphatase (a stage-II event) do not produce the enzyme. Mutants blocked towards the end of stage II or later produce both enzymes. During sporulation of the wild-type strain, the DNAase appears about 1 h after alkaline phosphatase. The results suggest that production of the DNAase is controlled by a still-undiscovered stage-II genetic locus.  相似文献   

4.
Abstract During sporulation of Bacillus subtilis strain 168 initiated by step-down conditions, resistance to chlorhexidine diacetate (CHA) developed at about t 3.5, before heat but after toluene resistance. Mutants blocked at stage IV of sporulation were sensitive to all three treatments. Stage V mutants were toluene resistant but moderately sensitive to heat and CHA. A stage VI mutant was resistant to all three treatments. Thus, chlorhexidine resistance is likely to be a result of spore coat, rather than of cortex, development.  相似文献   

5.
Sporulation of Tricarboxylic Acid Cycle Mutants of Bacillus subtilis   总被引:18,自引:13,他引:5       下载免费PDF全文
A mutant of Bacillus subtilis 168 lacking aconitase (EC 4.2.1.3) was found to be blocked at stage 0 or I of sporulation. Although adenosine triphosphate levels, which normally decrease in tricarboxylic acid cycle mutants at the completion of exponential growth, could be maintained at higher levels by feeding metabolizable carbon sources, this did not permit the cells to progress further into the sporulation sequence. When post-exponential-phase cells of mutants blocked in the first half of the tricarboxylic acid cycle were resuspended with an energy source in culture fluid from post-exponential-phase wild-type B. subtilis or Escherichia coli, good sporulation occurred. The spores produced retained the mutant genotype and were heat stable but lost refractility and heat stability several hours after their production.  相似文献   

6.
Asporogenous mutants of Bacillus subtilis were examined for the change in template specificity of ribonucleic acid (RNA) polymerase characteristic of wild-type cells undergoing sporulation. Mutants blocked at stages II, III, and IV showed a changed specificity of the enzyme after the end of growth and were in this respect indistinguishable from the wild type. The RNA polymerase of eight stage-zero mutants (out of nine tested) which possess mutations that map at six distinct loci retained the template specificity of vegetative cells.  相似文献   

7.
8.
Developmental Block in Citric Acid Cycle Mutants of Bacillus subtilis   总被引:5,自引:4,他引:1  
Mutants deficient in different enzymes of the citric acid cycle can be subdivided into two groups according to the frequency at which they produce heat-resistant spores in nutrient sporulation medium. However, the majority of cells can develop in this medium only to the axial filament stage I of sporulation; aconitase and isocitrate dehydrogenase mutants need the addition of glutamate to reach this stage.  相似文献   

9.
10.
Alcohol-resistant sporulation mutants of Bacillus subtilis.   总被引:5,自引:1,他引:4       下载免费PDF全文
About 80% of Bacillus subtilis cells form spores when grown in nutrient broth. In medium containing various short-chain aliphatic alcohols, the frequency of sporulation was reduced to 0.5%. Mutants sporulated in the presence of alcohols at a frequency of 30 to 40%. Sporulation in the wild-type cells was sensitive to alcohol at the beginning of sporulation (stage zero). Sensitivity to alcohol in the mutants was also at stage zero, even though the sensitivity was considerably reduced. This sensitivity of sporulation to alcohol is the phenotypic expression of a genetic locus designated ssa. Mutations at this locus lead to a decreased sensitivity of sporulation to alcohol without modifying the sensitivity of growth. Genetic analysis by transduction was bacteriophage PBS1 revealed that ssa mutations are near the previously described spo0A locus. ssa mutants also differ from wild-type cells in the composition of membrane phospholipids. The relative amount of phosphatidylglycerol increased, whereas the relative amount of phosphatidylethanolamine and lysylphosphatidylglycerol decreased relative to the proportions in the wild type. The distribution of fatty acids in membrane lipids is the same as in the wild type. No differential sensitivity of phospholipid metabolism to alcohol could be detected in the mutant. This work therefore reveals that the extensive, pleiotropic changes in the membranes of ssa mutants are the phenotypic reflection of alterations at a specific gene locus.  相似文献   

11.
A-factor, 2-(6'-methylheptanoyl)-3R-hydroxymethyl-4-butanolide, is an autoregulator essential for streptomycin production and sporulation in Streptomyces griseus. S. griseus 2247 that requires no A-factor for streptomycin production or sporulation was found to have a defect in the A-factor-binding protein. This observation implied that the A-factor-binding protein in the absence of A-factor repressed the expression of both phenotypes in the wild-type strain. Screening among mutagenized S. griseus colonies for strains producing streptomycin and sporulating in the absence of A-factor yielded three mutants that were also deficient in the A-factor-binding protein. Reversal of the defect in the A-factor-binding protein of these mutants led to the simultaneous loss of streptomycin production and sporulation. These data suggested that the A-factor-binding protein played a role in repressing both streptomycin production and sporulation and that the binding of A-factor to the protein released its repression. Mutants deficient in the A-factor-binding protein began to produce streptomycin and sporulate at an earlier stage of growth than did the wild-type strain. These mutants produced approximately 10 times more streptomycin than did the parental strain. These findings are consistent with the idea that the intracellular concentration of A-factor determines the timing of derepression of the gene(s) whose expression is repressed by the A-factor-binding protein.  相似文献   

12.
Mutants deficient in sporulation were isolated and characterized with respect to antibiotic and protease activity, transformability, growth, and sporulation. All but two mutants could grow on minimal medium containing glucose. The inability of most mutants to incorporate uracil into trichloroacetic acid-precipitable material (ribonucleic acid) during the developmental period, and their response to a number of carbon sources, were used to characterize their biochemical blocks. Reproducible measurements of these responses were possible when the pH of the culture, which changed during growth and greatly influenced the rate of uracil uptake, was adjusted to 6.5. By their response to ribose and glutamate, the sporulation mutants could then be divided into four groups. All mutants of the first three groups produced antibiotic activity against Staphylococcus aureus, whereas all mutants, except one, of the fourth group produced none or very little of this activity. Mutants which did not respond to glutamate belonged to the first three groups; they also grew slowly or not at all on glutamate as sole carbon source. One of these mutants lacked succinic dehydrogenase activity. The results indicate that most of our sporulation mutants are unable to produce or utilize a natural carbon precursor, which is normally used as a slowly available carbon and energy source via the Krebs cycle when other carbon sources are used up. It enters the Krebs cycle as a precursor of alpha-ketoglutarate, probably via acetylcoenzyme A. All mutants of group four are blocked in this pathway before alpha-ketoglutarate.  相似文献   

13.
Fruiting-body formation in the bacterium Myxococcus xanthus consists of a temporal sequence of cellular aggregation and sporulation. To examine the developmental stages more closely, we established synchronous and reproducible conditions for fruiting-body formation. Mutants that are temperature sensitive for fruiting-body formation were isolated and analyzed under these conditions. The terminal morphologies of the mutant strains at the nonpermissive temperature were found to resemble intermediate stages of fruiting-body formation and therefore were grouped in the following phenotypic classes: (i) rough mutants, which show no aggregation; (ii) swirl mutants, which show defective aggregation; (iii) flat-mound mutants and translucent-mound mutants, mutants which aggregate but show very low levels of sporulation. The mutants were characterized by temperature-shift experiments and found to exhibit discrete and reproducible temperature-sensitive periods. The ends of the temperature-sensitive periods in the various mutants covered a broad range of the developmental cycle. No correlation was found between the terminal morphologies at the restrictive temperature and the timing of the temperature-sensitive periods. However, the terminal morphologies correlated well with sporulation. The rough and swirl mutants produced normal numbers of myxospores at 34 degrees C even though they failed to aggregate. In contrast, the flat-mound and translucent-mound mutants, which aggregate normally, produced very few spores. The translucent-mound mutants were also temperature sensitive for induction of glycerol spores. The results indicate that both aggregation and sporulation are initiated early in the developmental cycle and that these processes are largely independent of each other.  相似文献   

14.
15.
Three mutants of Aspergillus nidulans, selected to have a block at an early stage of conidiation (asexual sporulation), exhibit similar pleiotropic phenotypes. Each of these mutants, termed preinduction mutants, also are blocked in sexual sporulation and secrete a set of phenolic metabolites at level much higher than wild type or mutants blocked at later stages of conidiation. Backcrosses of these mutants to wild type showed that the three phenotypes always cosegregated. Diploids containing the mutant alleles in all pairwise combinations were normal for all phenotypes, showing that the three mutations are nonallelic. This conclusion was confirmed by the finding that the mutations map at three unlinked or distantly linked loci. Ten revertants of the two least leaky preinduction mutants, selected for ability to conidiate, were found in each case to arise by a second-site suppressor mutation. All of the revertants still showed accumulation of some of the phenolic metabolites but differed from each other in certain components. Three of the revertants retained the block in sexual sporulation. In these cases the suppressor has thus uncoupled the block in asexual sporulation from the block in sexual sporulation. These results are understandable in terms of a model in which preinduction mutations and their suppressors affect steps in a single metabolic pathway whose intermediates include an effector specific for asexual sporulation and a second effector specific for sexual sporulation.  相似文献   

16.
Fusidic acid-resistant, sporulation-defective mutants were isolated from Bacillus subtilis 168 thy trp. About two-thirds of the fusidic acid-resistant (fusr) mutants were defective in sporulation ability and fell into three classes with respect to sporulation character. The representative mutants FUS426 and FUS429 were characterized in detail. FUS426 [fusr spo (Ts)], a temperature-sensitive sporulation mutant, grew well at 30 and 42 degrees C but did not sporulate at 42 degrees C. FUS429 [fusr spo (Con)], conditional sporulation mutant, grew and sporulated normally in the absence of fusidic acid, but its sporulation and growth rates decreased in the presence of fusidic acid, depending on the concentration of the drug. Although electron microscopic observation showed that both mutants were blocked at stage I of sporulation, the physiological analyses indicate that these mutants belong to the SpoOB class. Both mutants formed a thickened cell wall as compared with that of the parental strain. Genetic and in vitro protein synthesis analyses led to the conclusion that the sporulation-defective character of mutants FUS426 and FUS429 resulted from an alteration in elongation factor G caused by a single lesion in the fus locus. The possible role of elongation factor G in sporulation is discussed.  相似文献   

17.
Spore formation of 15 rifampin-resistant (Rifr) mutants of Bacillus subtilis strain 168 was examined. As a pleiotropic effect of a Rifr mutation, glutamate synthase activity was lost in these mutants. Twelve of the 15 mutants examined formed as many spores as the parent, but the remaining 3 formed significantly fewer (1%) spores. One of the latter mutants characterized further (RF301) was blocked in its sporulation process at stage 0. Thus, it was concluded that a certain modification of ribonucleic acid polymerase may affect specifically the gene expression of glutamate synthase and also the sporulation process at the initial stage.  相似文献   

18.
19.
20.
Five temperature-sensitive sporulation mutants of Bacillus cereus T have been isolated. These mutants are blocked at stage 0 of sporulation at the restrictive temperature (37 C) but are able to sporulate at nearly normal frequencies at the permissive temperature (26 C). A bacteriophage that forms a stable lysogen in the parent strain is induced at increased frequencies in the mutants. This induction is accompanied, in some of the mutants, by a reduction in immunity to the phage. Revertants, selected for their ability to sporulate normally at both temperatures, lose their ability to produce high titers of the phage. In addition to this lytic phage, an apparently defective phage has been found in lysates of the mutants. Strains cured of the plaque-forming phage still carry the defective phage. Comparisons of physical and biological properties of the plaque-forming phage with those of the two Bacillus cereus phages most similar to it have shown that this phage is not identical to either of them. The maximal titer of phage produced in cultures of the parent strain is about 10(3) plaque-forming units (PFU) per ml at both temperatures. The maximal titers of phage produced by the mutant are 4 x 10(9) PFU/ml at 37 C and 7 x 10(8) PFU/ml at 26 C. Both mutant and parent strains release over 90% of the phage they produce after the onset of stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号