首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Scepek  M Lindau 《The EMBO journal》1993,12(5):1811-1817
We have investigated the granule fusion events during exocytosis in horse eosinophils by time-resolved patch-clamp capacitance measurements. Stimulation with intracellular GTP gamma S leads to a stepwise capacitance increase by 4.0 +/- 0.9 pF. At GTP gamma S concentrations < 20 microM the step size distribution is in agreement with the granule size distribution in resting cells. Above 80 microM the number of steps is reduced and very large steps occur. The total capacitance increase, however, is unaffected. These results show that at high GTP gamma S concentrations granule--granule fusion occurs inside the cell forming large compound granules, which then fuse with the plasma membrane (compound exocytosis). The electrical equivalent circuit of the cell during degranulation indicates the formation of a degranulation sac by cumulative fusion events. Fusion of the first granule with the plasma membrane induces fusion of further granules with this granule directing the release of all the granular material to the first fusion pore. The physiological function of eosinophils is the killing of parasites. Compound exocytosis and cumulative fusion enable the cells to focus the release of cytotoxic proteins to well defined target regions and prevent uncontrolled diffusion of this material, which would damage intact host cells.  相似文献   

2.
The kinetics of release of four intracellular enzymes from different yeast cell locations using the Differential Product Release (DPR) method has been investigated. The method uses a combination of physical, chemical and biological agents such as lytic enzymes, an osmotic support and a spheroplast stabilizer. Using the DPR technique a wall enzyme, invertase, was released with a very high specific activity in the first step from a breadmaking strain ofS. cerevisiae. Maximum release could be obtained in this step when the incubation time was extended from 60 min to 100 min. Two cytosol enzymes, α-D-glucosidase and alcohol dehydrogenase were released in the second step. Fumarase was released in the third step almost instantaneously after disruption of the mitochondria which reduces considerably, by ca. 1 hour, the total incubation time of DPR. This paper investigates the kinetics of enzyme release during the 3 steps of DPR.  相似文献   

3.
Oxygen equilibrium curves have been measured on human normal red blood cells, at the temperatures of 20, 25, 30, 37 and 41 degrees C, and at pHs ranging from 6.8 to 8.2. The thermodynamical parameters have been determined for the four successive steps of oxygenation and for overall oxygenation, according to the Adair and MWC models [Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol 1965;12:88-118]. The heat release appears to be nearly equal for the four steps. At the first three steps, the delta H change is counterbalanced by a nearly equivalent change of delta S, resulting in a rather small delta G value. delta G is greater at the fourth step, because of diminution of this enthalpy-entropy compensation phenomenon. The four steps are both enthalpy and entropy driven. According to the MWC model, the T to R transition is endothermic, and allosteric quaternary transition occurs at binding of the third oxygen. The average heat release increases by 2.8 kcal/mol when pH raises from 7.4 to 8.2, but flattens below pH 7.4. After correction for the heat of solution of oxygen and for the heat of proton release (referred to intracellular pH), an intrinsic heat for oxygenation of the heme of approximately--13 kcal/mol is obtained for the successive steps of oxygenation (at pH 7.4, 37 degrees C). These results are compared with those previously obtained for pigeon and trout red blood cells.  相似文献   

4.
5.
Toxoplasma gondii is a natural intracellular protozoal pathogen of mice and other small mammals. After infection, the parasite replicates freely in many cell types (tachyzoite stage) before undergoing a phase transition and encysting in brain and muscle (bradyzoite stage). In the mouse, early immune resistance to the tachyzoite stage is mediated by the family of interferon-inducible immunity-related GTPases (IRG proteins), but little is known of the nature of this resistance. We reported earlier that IRG proteins accumulate on intracellular vacuoles containing the pathogen, and that the vacuolar membrane subsequently ruptures. In this report, live-cell imaging microscopy has been used to follow this process and its consequences in real time. We show that the rupture of the vacuole is inevitably followed by death of the intracellular parasite, shown by its permeability to cytosolic protein markers. Death of the parasite is followed by the death of the infected cell. The death of the cell has features of pyronecrosis, including membrane permeabilisation and release of the inflammatory protein, HMGB1, but caspase-1 cleavage is not detected. This sequence of events occurs on a large scale only following infection of IFNγ-induced cells with an avirulent strain of T. gondii, and is reduced by expression of a dominant negative mutant IRG protein. Cells infected by virulent strains rarely undergo necrosis. We did not find autophagy to play any role in the key steps leading to the death of the parasite. We conclude that IRG proteins resist infection by avirulent T. gondii by a novel mechanism involving disruption of the vacuolar membrane, which in turn ultimately leads to the necrotic death of the infected cell.  相似文献   

6.
1. Osmotic shock disrupts particles of phage T2 into material containing nearly all the phage sulfur in a form precipitable by antiphage serum, and capable of specific adsorption to bacteria. It releases into solution nearly all the phage DNA in a form not precipitable by antiserum and not adsorbable to bacteria. The sulfur-containing protein of the phage particle evidently makes up a membrane that protects the phage DNA from DNase, comprises the sole or principal antigenic material, and is responsible for attachment of the virus to bacteria. 2. Adsorption of T2 to heat-killed bacteria, and heating or alternate freezing and thawing of infected cells, sensitize the DNA of the adsorbed phage to DNase. These treatments have little or no sensitizing effect on unadsorbed phage. Neither heating nor freezing and thawing releases the phage DNA from infected cells, although other cell constituents can be extracted by these methods. These facts suggest that the phage DNA forms part of an organized intracellular structure throughout the period of phage growth. 3. Adsorption of phage T2 to bacterial debris causes part of the phage DNA to appear in solution, leaving the phage sulfur attached to the debris. Another part of the phage DNA, corresponding roughly to the remaining half of the DNA of the inactivated phage, remains attached to the debris but can be separated from it by DNase. Phage T4 behaves similarly, although the two phages can be shown to attach to different combining sites. The inactivation of phage by bacterial debris is evidently accompanied by the rupture of the viral membrane. 4. Suspensions of infected cells agitated in a Waring blendor release 75 per cent of the phage sulfur and only 15 per cent of the phage phosphorus to the solution as a result of the applied shearing force. The cells remain capable of yielding phage progeny. 5. The facts stated show that most of the phage sulfur remains at the cell surface and most of the phage DNA enters the cell on infection. Whether sulfur-free material other than DNA enters the cell has not been determined. The properties of the sulfur-containing residue identify it as essentially unchanged membranes of the phage particles. All types of evidence show that the passage of phage DNA into the cell occurs in non-nutrient medium under conditions in which other known steps in viral growth do not occur. 6. The phage progeny yielded by bacteria infected with phage labeled with radioactive sulfur contain less than 1 per cent of the parental radioactivity. The progeny of phage particles labeled with radioactive phosphorus contain 30 per cent or more of the parental phosphorus. 7. Phage inactivated by dilute formaldehyde is capable of adsorbing to bacteria, but does not release its DNA to the cell. This shows that the interaction between phage and bacterium resulting in release of the phage DNA from its protective membrane depends on labile components of the phage particle. By contrast, the components of the bacterium essential to this interaction are remarkably stable. The nature of the interaction is otherwise unknown. 8. The sulfur-containing protein of resting phage particles is confined to a protective coat that is responsible for the adsorption to bacteria, and functions as an instrument for the injection of the phage DNA into the cell. This protein probably has no function in the growth of intracellular phage. The DNA has some function. Further chemical inferences should not be drawn from the experiments presented.  相似文献   

7.
The endoplasmic reticulum (ER) is the main source for the storage and release of intracellular calcium in neurons and, thus, contributes to the functionality of a diverse set of pathways that control critical aspects of central nervous system function including but not limited to gene expression, neurotransmission, learning, and memory. ER-derived proteins obtained after subcellular fractionation of mouse brain homogenate were digested with trypsin and the corresponding peptides fractionated by strong cation exchange chromatography followed by LC-MS/MS analysis on a hybrid linear ion trap--Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. A comprehensive catalogue representing 1914 proteins was generated from this particular proteomic analysis using identification criteria that corresponded to a false positive identification rate of 0.4%. Various molecular functions and biological processes relevant to the ER were identified upon gene ontology (GO)-based analysis including pathways associated with molecular transport, protein trafficking and localization, and cell signaling. Comparison of the 2D-LC-MS/MS results with those obtained from shotgun LC-MS/MS analyses demonstrated that most molecular functions and biological processes were represented via GO analysis using either methodology. Results from this comparison as well as a focused investigation into components of calcium-mediated signaling in the mouse brain ER are also presented.  相似文献   

8.
Exposure of mammalian cells to oxidant stress causes early (iron catalysed) lysosomal rupture followed by apoptosis or necrosis. Enhanced intracellular production of reactive oxygen species (ROS), presumably of mitochondrial origin, is also observed when cells are exposed to nonoxidant pro-apoptotic agonists of cell death. We hypothesized that ROS generation in this latter case might promote the apoptotic cascade and could arise from effects of released lysosomal materials on mitochondria. Indeed, in intact cells (J774 macrophages, HeLa cells and AG1518 fibroblasts) the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) causes lysosomal rupture, enhanced intracellular ROS production, and apoptosis. Furthermore, in mixtures of rat liver lysosomes and mitochondria, selective rupture of lysosomes by MSDH promotes mitochondrial ROS production and cytochrome c release, whereas MSDH has no direct effect on ROS generation by purifed mitochondria. Intracellular lysosomal rupture is associated with the release of (among other constituents) cathepsins and activation of phospholipase A2 (PLA2). We find that addition of purified cathepsins B or D, or of PLA2, causes substantial increases in ROS generation by purified mitochondria. Furthermore, PLA2 - but not cathepsins B or D - causes rupture of semipurified lysosomes, suggesting an amplification mechanism. Thus, initiation of the apoptotic cascade by nonoxidant agonists may involve early release of lysosomal constituents (such as cathepsins B and D) and activation of PLA2, leading to enhanced mitochondrial oxidant production, further lysosomal rupture and, finally, mitochondrial cytochrome c release. Nonoxidant agonists of apoptosis may, thus, act through oxidant mechanisms.  相似文献   

9.
Summary In the arm of the ophiuroid Ophiocomina nigra the intervertebral muscles are linked to the vertebral ossicles by tendinous connective tissue fibres. When an arm autotomizes, rupture of the tendons at one end (the autotomy insertion) permits each muscle in the autotomizing segment to separate cleanly from an ossicle while its other attachment (the non-autotomy insertion) remains intact. The anatomical relations, composition and function of the tendons were investigated by histochemical, electron microscopical and experimental methods. The tendons consist of a carbohydrate-rich secreted collagen derived from the basal lamina of the muscles. At autotomy their rupture is preceded and facilitated by an increase in extensibility, which represents the first evidence for variable tensility in an echinoderm connective tissue not composed of interstitial collagen. Granule-containing juxtaligamental cell processes are associated with the tendons of the autotomy insertions but are absent from the non-autotomy insertions. There appears to be widespread release of granules from these processes at autotomy. The results of a simple experiment implicate the juxtaligamental cells in the control of tendon extensibility and a possible mechanism for this control is presented.  相似文献   

10.
Escape from the host erythrocyte by the invasive stage of the malaria parasite Plasmodium falciparum is a fundamental step in the pathogenesis of malaria of which little is known. Upon merozoite invasion of the host cell, the parasite becomes enclosed within a parasitophorous vacuole, the compartment in which the parasite undergoes growth followed by asexual division to produce 16-32 daughter merozoites. These daughter cells are released upon parasitophorous vacuole and erythrocyte membrane rupture. To examine the process of merozoite release, we used P. falciparum lines expressing green fluorescent protein-chimeric proteins targeted to the compartments from which merozoites must exit: the parasitophorous vacuole and the host erythrocyte cytosol. This allowed visualization of merozoite release in live parasites. Herein we provide the first evidence in live, untreated cells that merozoite release involves a primary rupture of the parasitophorous vacuole membrane followed by a secondary rupture of the erythrocyte plasma membrane. We have confirmed, with the use of immunoelectron microscopy, that parasitophorous vacuole membrane rupture occurs before erythrocyte plasma membrane rupture in untransfected wild-type parasites. We have also demonstrated selective inhibition of each step in this two-step process of exit using different protease inhibitors, implicating the involvement of distinct proteases in each of these steps. This will facilitate the identification of the parasite and host molecules involved in merozoite release.  相似文献   

11.
Kiselyov K  Muallem S 《Cell calcium》2008,44(1):103-111
Lysosomal storage diseases (LSDs) are a class of genetic disorders in which proteins responsible for digestion or absorption of endocytosed material do not function or do not localize properly. The resulting cellular "indigestion" causes buildup of intracellular storage inclusions that contain unprocessed lipids and proteins that form macromolecular complexes. The buildup of storage material is associated with degenerative processes that are observed in all LSDs, albeit the correlation between the amount of storage inclusions and the severity of the degenerative processes is not always evident. The latter suggests that a specific mechanism set in motion by aberrant lysosomal function drives the degenerative processes in LSDs. It is becoming increasingly clear that in addition to their function in degrading endocytosed material, lysosomes are essential housekeeping organelles responsible for maintaining healthy population of intracellular organelles, in particular mitochondria. The present review surveys the current knowledge on the lysosomal-mitochondrial axis and its possible role as a contributing factor to mitochondrial Ca(2+) homeostasis and to cell death in LSDs.  相似文献   

12.
The inositol 1,4,5-trisphosphate receptor (InsP3R) family of Ca2+ release channels is central to intracellular Ca2+ signaling in mammalian cells. The InsP3R channels release Ca2+ from intracellular compartments to generate localized Ca2+ transients that govern a myriad of cellular signaling phenomena (Berridge, 1993. Nature. 361:315-325; Joseph, 1996. Cell Signal. 8:1-7; Kume et al., 1997. Science. 278:1940-1943; Berridge, 1997. Nature. 368:759-760). express multiple InsP3R isoforms, but only the function of the single type 1 InsP3R channel is known. Here the single-channel function of single type 2 InsP3R channel is defined for the first time. The type 2 InsP3R forms channels with permeation properties similar to that of the type 1 receptor. The InsP3 regulation and Ca2+ regulation of type 1 and type 2 InsP3R channels are strikingly different. Both InsP3 and Ca2+ are more effective at activating single type 2 InsP3R, indicating that single type 2 channels mobilize substantially more Ca2+ than single type 1 channels in cells. Furthermore, high cytoplasmic Ca2+ concentrations inactivate type 1, but not type 2, InsP3R channels. This indicates that type 2 InsP3R channel is different from the type 1 channel in that its activity will not be inherently self-limiting, because Ca2+ passing through an active type 2 channel cannot feed back and turn the channel off. Thus the InsP3R identity will help define the spatial and temporal nature of local Ca2+ signaling events and may contribute to the segregation of parallel InsP3 signaling cascades in mammalian cells.  相似文献   

13.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   

14.
Plasmodium falciparum is an obligate intracellular pathogen responsible for worldwide morbidity and mortality. This parasite establishes a parasitophorous vacuole within infected red blood cells wherein it differentiates into multiple daughter cells that must rupture their host cells to continue another infectious cycle. Using atomic force microscopy, we establish that progressive macrostructural changes occur to the host cell cytoskeleton during the last 15 h of the erythrocytic life cycle. We used a comparative proteomics approach to determine changes in the membrane proteome of infected red blood cells during the final steps of parasite development that lead to egress. Mass spectrometry-based analysis comparing the red blood cell membrane proteome in uninfected red blood cells to that of infected red blood cells and postrupture vesicles highlighted two temporally distinct events; (Hay, S. I., et al. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, e1000048) the striking loss of cytoskeletal adaptor proteins that are part of the junctional complex, including α/β-adducin and tropomyosin, correlating temporally with the emergence of large holes in the cytoskeleton seen by AFM as early ~35 h postinvasion, and (Maier, A. G., et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48-61) large-scale proteolysis of the cytoskeleton during rupture ~48 h postinvasion, mediated by host calpain-1. We thus propose a sequential mechanism whereby parasites first remove a selected set of cytoskeletal adaptor proteins to weaken the host membrane and then use host calpain-1 to dismantle the remaining cytoskeleton, leading to red blood cell membrane collapse and parasite release.  相似文献   

15.
The role of calmodulin for inositol 1,4,5-trisphosphate receptor function   总被引:1,自引:0,他引:1  
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM). In this review we will first discuss the role of calcium as an activator and inactivator of the IP(3)R, concluding that calcium is the most important regulator of the IP(3)R. In the second part we will further focus on the role of CaM as modulator of the IP(3)R, using results of the voltage-dependent Ca(2+) channels and the RyR as reference material. Here we conclude that despite the fact that different CaM-binding sites have been characterized, their function for the IP(3)R remains elusive. In the third part we will discuss the possible functional role of CaM in IP(3)-induced Ca(2+) release (IICR) by direct and indirect mechanisms. Special attention will be given to the Ca(2+)-binding proteins (CaBPs) that were shown to activate the IP(3)R in the absence of IP(3).  相似文献   

16.
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetet-raacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 453-458, 1997.  相似文献   

17.
P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2X(A)R knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen.  相似文献   

18.
The suitability of several radioactive precursors for studying the secretory processes in the cells of the subcommissural organ (SCO) of frogs (Rana temporaria) was tested by means of autoradiography. Special attention was paid to: the contributions made by different cellular compartments to the glycosilation of the secretory product, and the intracellular turnover rate of the secretory material. From the results it is concluded that: 3H-glucosamine excellently labels Reissner's fibre (RF) in autoradiographs, much better than any other of the radioactive precursors applied. 3H-glucosamine molecules are attached to the protein moiety of the secretory product within the peri- and subnuclear granular endoplasmic reticulum, whereas 3H-fucose and additional 3H-glucosamine molecules are added to the oligosaccharide moiety in the supranuclear Golgi apparatus, previous to apical release; consequently, the subnuclear secretory material and the material that is released into the brain ventricle are chemically different so far as the oligosaccharide moiety is concerned. The oligosaccharide portion of the apical secretory product belongs (at least partially) to the class of the N-linked complex type oligosaccharides. The intracellular half-life of the subnuclear secretory material is at least 5.5 days. The subnuclear secretory material in the ependymal SCO-cells presumably has to pass through the Golgi apparatus before it can be released; this release probably occurs at the apical cell border.  相似文献   

19.
A A McColm  P I Trigg 《Parasitology》1980,81(1):199--209
Labelled antigens sharing determinants with both membrane and cytoplasmic fractions of Plasmodium knowlesi were detected in culture medium after in vitro incubation of schizont-stage parasites previously pulse-labelled with [3H]isoleucine. Release of antigens occurred only during schizont rupture and merozoite re-invasion. Antigenic material accounted for up to a third of the total trichloroacetic acid-insoluble radioactivity released by the cells. Absorption experiments indicated that approximately two-thirds of this antibody-precipitable material shared determinants with parasite membrane antigens, with a similar quantity sharing determinants with cytoplasmic proteins. Using antisera derived against 2 different antigenic variants of P. knowlesi, no evidence for the release of variant-spcific antigens was obtained. Centrifugal analysis revealed that the majority of the radio-isotope labelled antigens were particulate in nature; however, some appeared to exist in true solution.  相似文献   

20.
Kinetic studies on gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release were undertaken using rat and chicken pituitary cell cultures. In response to continuous GnRH stimulation, a biphasic pattern of LH release was demonstrated. The two phases showed different susceptibility to the voltage-gated Ca2+ channel blockers D600 and nifedipine. The first (transient) phase of LH release was unaffected by the Ca2+ channel blockers whereas the second (sustained) phase was inhibited by both drugs. These results indicate that the initial phase of LH release is independent of Ca2+ entry through voltage-gated Ca2+ channels and may depend on mobilisation of intracellular Ca2+ or entry of extracellular Ca2+ through another mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号