首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Stabilization of protein structures and protein-protein interactions are critical in the engineering of industrially useful enzymes and in the design of pharmaceutically valuable ligands. Hydrophobic interactions involving phenylalanine residues play crucial roles in protein stability and protein-protein/peptide interactions. To establish an effective method to explore the hydrophobic environments of phenylalanine residues, we present a strategy that uses pentafluorophenylalanine (F5Phe) and cyclohexylalanine (Cha). In this study, substitution of F5Phe or Cha for three Phe residues at positions 328, 338, and 341 in the tetramerization domain of the tumor suppressor protein p53 was performed. These residues are located at the interfaces of p53-p53 interactions and are important in the stabilization of the tetrameric structure. The stability of the p53 tetrameric structure did not change significantly when F5Phe-containing peptides at positions Phe328 or Phe338 were used. In contrast, the substitution of Cha for Phe341 in the hydrophobic core enhanced the stability of the tetrameric structure with a T(m) value of 100 degrees C. Phe328 and Phe338 interact with each other through pi-interactions, whereas Phe341 is buried in the surrounding alkyl side-chains of the hydrophobic core of the p53 tetramerization domain. Furthermore, high pressure-assisted denaturation analysis indicated improvement in the occupancy of the hydrophobic core. Considerable stabilization of the p53 tetramer was achieved by filling the identified cavity in the hydrophobic core of the p53 tetramer. The results indicate the status of the Phe residues, indicating that the "pair substitution" of Cha and F5Phe is highly suitable for probing the environments of Phe residues.  相似文献   

5.
6.
Inactivation of the tumour suppressor p53 is central to carcinogenesis and acquisition of resistance to drug-induced apoptosis. The majority of alterations are missense mutations and occur within the DNA-binding domain. However, little is known about the point mutations in the tetramerization domain (TD). Here we investigated the properties of a new p53 mutant (Lys 351 to Asn) in the TD identified in a cisplatin-resistant ovarian carcinoma cell line (A2780 CIS). We found that K351N substitution significantly reduces the thermodynamic stability of p53 tetramers without affecting the overall half-life of the protein. Moreover, p53 K351N has a reduced ability to bind DNA and to trans-activate its specific target gene promoters, such as bax. Data obtained from the analysis of p53 subcellular localization revealed that K351N mutation inhibits the nuclear export of p53 and accumulation in the cytoplasm induced by cisplatin treatment. These results identify p53 K351N as a new cancer associated mutant with reduced tumour suppressor activity and altered functions in response to apoptotic stimuli.  相似文献   

7.
8.
9.
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM.  相似文献   

10.
11.
Johnsson N 《FEBS letters》2002,531(2):259-264
Many mutations in the human tumor suppressor p53 affect the function of the protein by destabilizing the structure of its DNA binding domain. To monitor the effects of those mutations in vivo the stability of the DNA binding domain of p53 and some of its mutants was investigated with the split-ubiquitin (split-Ub) method. The split-Ub-derived in vivo data on the relative stability of the mutants roughly correlate with the quantitative data from in vitro denaturation experiments as reported in the literature. A variation of this assay allows visualizing the difference in stability between the wild-type p53 core and the mutant p53(V143A) by a simple growth assay.  相似文献   

12.
13.
14.
The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C-terminus (residues 323-355) and its three-dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C-terminal mutations on DNA binding. Residues 322-355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three-dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding-competent dimers, consistent with the location of this residue at the dimer-dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic-translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA-bound asymmetric state.  相似文献   

15.
The physiologically active form of p53 consists of a tetramer of four identical 393-amino-acid subunits associated via their tetramerization domains (TDs; residues 325-355). One in two human tumors contains a point mutation in the DNA binding domain (DBD) of p53 (residues 94-312). Most existing studies on the effects of these mutations on p53 structure and function have been carried out on the isolated DBD fragment, which is monomeric. Recent structural evidence, however, suggests that DBDs may interact with each other in full-length tetrameric forms of p53. Here, we investigate the effects of tumorigenic DBD mutations on the folding of p53 in its tetrameric form. We employ the construct consisting of DBD and TD (amino acids 94-360). We characterize the stability and conformational state of the tumorigenic DBD mutants R248Q, R249S, and R282Q using equilibrium denaturation and functional assays. Destabilizing mutations cause DBD to misfold when it is part of the p53 tetramer, but not when it is monomeric. This conformation is populated under moderately destabilizing conditions (10 °C in 2 M urea, and at physiological temperature in the absence of denaturant). Under those same conditions, it is not present in the isolated DBD fragment or in the presence of the TD mutation L344P, which abolishes tetramerization. Misfolding appears to involve intramolecular DBD-DBD association within a single tetrameric molecule. This association is promoted by destabilization of DBD (caused by mutation or elevated temperature) and by the high local DBD concentration enforced by tetramerization of TD. Disrupting the nonnative DBD-DBD interaction or transiently inhibiting tetramerization and allowing p53 to fold as a monomer may be potential strategies for pharmacological intervention in cancer.  相似文献   

16.
p53 is altered in about 50 % of cancers. Most of the p53 mutants have lost the wild-type tumour suppressor activity but show oncogenic properties. The majority of the p53 alterations are missense mutations of residues located in its DNA binding domain (DBD). Only a few mutations concern residues in its tetramerisation domain (TD). However, the study of mutant proteins identified in tumors that do not form tetramers has shown that they have lost the wild-type activity like most of the p53 DBD mutants. Here, we show that two of such mutant proteins, Arg342Pro and Leu344Pro are not dominant negative and do not stimulate the expression of a reporter gene under the control of the multi-drug resistance gene-1 (MDR-1). This suggests that to be oncogenic, p53 mutants need to form tetramers. Accordingly, the dominant negative effect and the ability of a tetrameric mutant protein, Asp281Gly, to stimulate the MDR-1 promoter are abolished when its TD is rendered non-functional by the mutation of leucine 344 to a proline residue. These results suggest that mutations in the TD, are less selected in tumors than mutations in the DBD because they do not lead to oncogenic proteins.  相似文献   

17.
18.
19.
20.
P53作为肿瘤抑制因子和转录调节因子在控制细胞周期、凋亡和DNA修复方面发挥重要作用。P53蛋白的稳定性和转录激活活性的调节主要依赖磷酸化、乙酰化、泛素化等多种翻译后修饰。最近研究发现一些组蛋白赖氨酸甲基转移酶和去甲基化酶可使P53蛋白C-端赖氨酸残基发生甲基化或去甲基化,调节P53蛋白的稳定性和转录激活活性。甲基化和去甲基化与其它翻译后修饰相互作用构成“P53密码”调节P53蛋白功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号