共查询到20条相似文献,搜索用时 15 毫秒
1.
Tiwari M Lopez-Cruzan M Morgan WW Herman B 《The Journal of biological chemistry》2011,286(10):8493-8506
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice. 相似文献
2.
Jie Han Leslie A. Goldstein Wen Hou Christopher J. Froelich Simon C. Watkins Hannah Rabinowich 《The Journal of biological chemistry》2010,285(29):22461-22472
The cytoplasm and the nucleus have been identified as activity sites for granzyme B (GrB) following its delivery from cytotoxic lymphocyte granules into target cells. Here we report on the ability of exogenous GrB to insert into and function within a proteinase K-resistant mitochondrial compartment. We identified Hax-1 (HS-1-associated protein X-1), a mitochondrial protein involved in the maintenance of mitochondrial membrane potential, as a GrB substrate within the mitochondrion. GrB cleaves Hax-1 into two major fragments: an N-terminal fragment that localizes to mitochondria and a C-terminal fragment that localizes to the cytosol after being released from GrB-treated mitochondria. The N-terminal Hax-1 fragment major cellular impact is on the regulation of mitochondrial polarization. Overexpression of wild-type Hax-1 or its uncleavable mutant form protects the mitochondria against GrB or valinomycin-mediated depolarization. The N-terminal Hax-1 fragment functions as a dominant negative form of Hax-1, mediating mitochondrial depolarization in a cyclophilin D-dependent manner. Thus, induced expression of the N-terminal Hax-1 fragment results in mitochondrial depolarization and subsequent lysosomal degradation of such altered mitochondria. This study is the first to demonstrate GrB activity within the mitochondrion and to identify Hax-1 cleavage as a novel mechanism for GrB-mediated mitochondrial depolarization. 相似文献
3.
Stephen P. Burke Lucinda Smith Jeffrey B. Smith 《The Journal of biological chemistry》2010,285(39):30061-30068
Although early studies of inhibitor of apoptosis proteins (IAPs) suggested that cIAP1 directly binds and inhibits caspases similarly to X-linked IAP (XIAP), a recent one found that micromolar concentrations of cIAP1 only weakly inhibit caspase-3, -7, or -9. Here, we show that cIAP1 specifically and cooperatively blocks the cytochrome c-dependent apoptosome in vitro. Hence, cIAP1 prevented the activation of procaspase-3 but had no effect on the processing of procaspase-9 or the activity of prior activated caspase-3. Like cIAP1, XIAP had no effect on procaspase-9 processing and was a more potent inhibitor of procaspase-3 activation than of already activated caspase-3 activity. Inhibition of procaspase-3 activation depended on BIR2 and BIR3 of cIAP1 and was independent of BIR1, RING, CARD, and UBA domains. Smac prevented cIAP1 from inhibiting procaspase-3 activation and reversed the inhibition by prior addition of cIAP1. A procaspase-9 mutant (D315A) that cannot produce the p12 subunit was resistant to inhibition by cIAP1. Therefore, the N-terminal Ala-Thr-Pro-Phe motif of the p12 subunit of the caspase-9 apoptosome facilitates apoptosome blockade. Consequently, cIAP1 cooperatively interacts with oligomerized processed caspase-9 in the apoptosome and blocks procaspase-3 activation. 相似文献
4.
Andrew Oberst Cristina Pop Alexandre G. Tremblay Véronique Blais Jean-Bernard Denault Guy S. Salvesen Douglas R. Green 《The Journal of biological chemistry》2010,285(22):16632-16642
Caspase-8 is a cysteine protease activated by membrane-bound receptors at the cytosolic face of the cell membrane, initiating the extrinsic pathway of apoptosis. Caspase-8 activation relies on recruitment of inactive monomeric zymogens to activated receptor complexes, where they produce a fully active enzyme composed of two catalytic domains. Although in vitro studies using drug-mediated affinity systems or kosmotropic salts to drive dimerization have indicated that uncleaved caspase-8 can be readily activated by dimerization alone, in vivo results using mouse models have reached the opposite conclusion. Furthermore, in addition to interdomain autoprocessing, caspase-8 can be cleaved by activated executioner caspases, and reports of whether this cleavage event can lead to activation of caspase-8 have been conflicting. Here, we address these questions by carrying out studies of the activation characteristics of caspase-8 mutants bearing prohibitive mutations at the interdomain cleavage sites both in vitro and in cell lines lacking endogenous caspase-8, and we find that elimination of these cleavage sites precludes caspase-8 activation by prodomain-driven dimerization. We then further explore the consequences of interdomain cleavage of caspase-8 by adapting the tobacco etch virus protease to create a system in which both the cleavage and the dimerization of caspase-8 can be independently controlled in living cells. We find that unlike the executioner caspases, which are readily activated by interdomain cleavage alone, neither dimerization nor cleavage of caspase-8 alone is sufficient to activate caspase-8 or induce apoptosis and that only the coordinated dimerization and cleavage of the zymogen produce efficient activation in vitro and apoptosis in cellular systems. 相似文献
5.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition. 相似文献
6.
Qi Hu Di Wu Wen Chen Zhen Yan Yigong Shi 《The Journal of biological chemistry》2013,288(21):15142-15147
Maturation of the single-chain caspase-9 zymogen through autoproteolytic processing is mediated by the Apaf-1 apoptosome at the onset of apoptosis. Processed caspase-9 and the apoptosome form a holoenzyme with robust proteolytic activity that is 2–3 orders of magnitude higher than that of free processed caspase-9. An unresolved important question is the role of caspase-9 processing, with some experimental data suggesting its dispensability. In this study, we demonstrate that, in contrast to wild-type caspase-9, the unprocessed single-chain caspase-9 triple mutant E306A/D315A/D330A (Casp9-TM) could no longer be adequately activated by the apoptosome. Compared with the protease activity of wild-type caspase-9, that of Casp9-TM in the presence of the apoptosome was drastically reduced. The crippled protease activity of Casp9-TM in the presence of the apoptosome is likely attributable to a markedly reduced ability of Casp9-TM to form homodimers. These data identify an essential role for the autoproteolytic processing of caspase-9 in its activation. 相似文献
7.
Mitochondria provide cellular energy supply via respiration and are the major sites for the generation of reactive oxygen species (ROS). Mitochondria also play a fundamental role in apoptosis. Heme is a key factor in mitochondrial function. Defective heme synthesis or altered heme metabolism is associated with numerous diseases. Here we investigated the molecular mechanism by which heme promotes HeLa cell growth and survival. We found that heme deficiency-induced apoptosis involves the release of cytochrome c and the activation of caspase 3. However, heme deficiency-induced apoptosis appears to occur by a unique mechanism distinct from those known to mediate mitochondrial-dependent apoptosis. Specifically, our data show that heme deficiency causes apoptosis in a pathway that is independent of ROS generation and the collapse of mitochondrial membrane potential. These results provide insights into how defective heme synthesis or altered heme metabolism causes diseases and how heme may control cell growth and cell death. 相似文献
8.
Yu E Zhai D Jin C Gerlic M Reed JC Liddington R 《The Journal of biological chemistry》2011,286(35):30748-30758
In multicellular organisms, apoptosis is a powerful method of host defense against viral infection. Apoptosis is mediated by a cascade of caspase-family proteases that commit infected cells to a form of programmed cell death. Therefore, to replicate within host cells, viruses have developed various strategies to inhibit caspase activation. In the mitochondrial cell-death pathway, release of cytochrome c from mitochondria into the cytosol triggers assembly of the oligomeric apoptosome, resulting in dimerization and activation of the apical caspase-9 (C9), and in turn its downstream effector caspases, leading to apoptosis. We previously showed that the vaccinia virus-encoded Bcl-2-like protein, F1L, which suppresses cytochrome c release by binding Bcl-2 family proteins, is also a C9 inhibitor. Here, we identify a novel motif within the flexible N-terminal region of F1L that is necessary and sufficient for interaction with and inhibition of C9. Based on functional studies and mutagenesis, we developed an atomic model of the complex in which F1L inhibits C9 by engaging the active site in the reverse orientation with respect to substrate peptides, in a manner analogous to that of XIAP-mediated inhibition of caspases-3 and -7. These studies offer new insights into the mechanism of apoptosome inhibition by F1L as well as novel probes to understand the molecular bases of apoptosome regulation and turnover. They also suggest how the two distinct functionalities of F1L (inhibition of C9 and suppression of pro-apoptotic Bcl-2 family proteins) may operate in a cellular setting. 相似文献
9.
Kazi A Sun J Doi K Sung SS Takahashi Y Yin H Rodriguez JM Becerril J Berndt N Hamilton AD Wang HG Sebti SM 《The Journal of biological chemistry》2011,286(11):9382-9392
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. 相似文献
10.
Ko MS Lee UH Kim SI Kim HJ Park JJ Cha SJ Kim SB Song H Chung DK Han IS Kwack K Park JW 《Archives of biochemistry and biophysics》2004,422(2):137-144
Developmentally regulated GTP-binding protein (DRG) is a new subfamily within the superfamily of GTP-binding proteins. Its expression is regulated during embryonic development. To investigate the effect of the expression of DRG2 on cell growth, we constructed a human Jurkat-T-cell line that overexpresses DRG2. Overexpression of DRG2 suppressed the growth and the aggregation of Jurkat cells but did not induce apoptotic cell death. We used cDNA microarray analysis to examine the global changes in gene expression induced by an overexpression of DRG2. DNA array analyses identified genes that may suppress cell growth at a number of levels in multiple signaling cascades in Jurkat cells and also several prosurvival genes that may protect cells from apoptosis. 相似文献
11.
Hiroi N Maruta H Tanuma S 《Apoptosis : an international journal on programmed cell death》1999,4(4):255-261
The relationship between the cell cycle and Fas-mediated apoptosis was investigated using Jurkat cells. Analysis of the inducibility of apoptosis by anti-Fas antibody during the cell cycle synchronized by the thymidine double-block method, showed that apoptosis was induced in only 50% of the G2/M phase cells, while most of cells in the other phases underwent apoptosis. These observations indicate that G2/M phase cells are more resistant to Fas-mediated apoptosis than cells in other phases. Furthermore, a detailed analysis of G2/M phase found that only 20–30% of the cells underwent apoptosis 12 h after the removal of the second thymidine block (pre-G2/M phase). This suggests that Fas-mediated apoptosis is potently suppressed during the pre-G2/M phase. A possible explanation for the observation that cells in the pre-G2/M phase are less sensitive to anti-Fas antibody is lower expression level of Fas. To test this possibility, Fas expression levels on the cell surface during the cell cycle were examined. The content of Fas on the cell surface, however, did not change appreciably during the cell cycle. Thus, the suppression of apoptosis in the pre-G2/M phase is determined downstream after the receipt of the apoptotic signal through Fas. 相似文献
12.
13.
Young MM Takahashi Y Khan O Park S Hori T Yun J Sharma AK Amin S Hu CD Zhang J Kester M Wang HG 《The Journal of biological chemistry》2012,287(15):12455-12468
Autophagy and apoptosis are two evolutionarily conserved processes that regulate cell fate in response to cytotoxic stress. However, the functional relationship between these two processes remains far from clear. Here, we demonstrate an autophagy-dependent mechanism of caspase-8 activation and initiation of the apoptotic cascade in response to SKI-I, a pan-sphingosine kinase inhibitor, and bortezomib, a proteasome inhibitor. Autophagy is induced concomitantly with caspase-8 activation, which is responsible for initiation of the caspase cascade and the mitochondrial amplification loop that is required for full execution of apoptosis. Inhibition of autophagosome formation by depletion of Atg5 or Atg3 results in a marked suppression of caspase-8 activation and apoptosis. Although caspase-8 self-association depends on p62/SQSTM1, its self-processing requires the autophagosomal membrane. Caspase-8 forms a complex with Atg5 and colocalizes with LC3 and p62. Moreover, FADD, an adaptor protein for caspase-8 activation, associates with Atg5 on Atg16L- and LC3-positive autophagosomal membranes and loss of FADD suppresses cell death. Taken together, these results indicate that the autophagosomal membrane serves as a platform for an intracellular death-inducing signaling complex (iDISC) that recruits self-associated caspase-8 to initiate the caspase-8/-3 cascade. 相似文献
14.
Cdk2 activity is associated with depolarization of mitochondrial membrane potential during apoptosis 总被引:5,自引:0,他引:5
Jin YH Yim H Park JH Lee SK 《Biochemical and biophysical research communications》2003,305(4):974-980
In this study we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces apoptotic cell death by depolarization of mitochondrial membrane potential in human hepatoma SK-HEP-1 cells. Sequential activation of caspases-9, -3, and -7, but not of caspase-8, occurs after mitochondrial membrane depolarization and cytochrome c release from the mitochondria of panaxadiol-treated cells. Moreover, Cdk2 kinase activity, but not Cdc2 kinase activity, is markedly upregulated in the early stages of apoptosis. Olomoucine or roscovitine, specific Cdks inhibitors, effectively prevent mitochondrial membrane depolarization as well as apoptotic cell death in panaxadiol-treated cells. Thus, panaxadiol-treatment induces cell death-dependent activation of Cdk2 kinase activity, which is functionally associated with depolarization of mitochondrial membrane potential and subsequent cytochrome c release. 相似文献
15.
de Vries JF Wammes LJ Jedema I van Dreunen L Nijmeijer BA Heemskerk MH Willemze R Falkenburg JH Barge RM 《Apoptosis : an international journal on programmed cell death》2007,12(1):181-193
Resistance of leukemic cells to chemotherapy frequently occurs in patients with acute leukemia, which may be caused by alterations
in common apoptotic pathways. Controversy exists whether cytostatic agents induce the mitochondrial or death receptor pathway
of apoptosis. In the mitochondrial pathway cytochrome C release and caspase-9 activation play a central role in the induction
of apoptosis, while formation of a Death Inducing Signaling Complex (DISC) and caspase-8 activation have been reported to
be essential in death receptor-induced apoptosis. Here, we show in human derived myeloid and lymphoblastic leukemia cell lines
that caspase-8 plays a more important role than previously expected in apoptosis mediated via the mitochondrial pathway. We
demonstrated in these malignant cells chemotherapy-induced apoptosis independent of the death receptor pathway, since blocking
this pathway using a retroviral construct encoding Flice inhibitory protein (FLIP) did not inhibit drug-induced apoptosis
or caspase-8 activation, while overexpression of Bcl-2 completely inhibited both events. Furthermore, we showed that activation
of caspase-8 by cytostatic agents occurred downstream from mitochondria. Since caspase-8 plays a central role in both death
receptor- and chemotherapy-induced apoptosis of malignant cells from patients with acute leukemia, therapeutic strategies
focusing at modulation and activation of caspase-8 may be successful in the treatment of drug-resistant malignancies.
Supported by a grant of the Dutch Cancer Society/KWF Kankerbestrijding: 99-2122. 相似文献
16.
c-Myc is known to induce or potentiate apoptotic processes predominantly by triggering or enhancing the activity of caspases, but the activation mechanisms of caspases by c-Myc remain still poorly understood. Here we found that in MycER™ rat fibroblasts the activation of c-Myc led to an early activation and cleavage of the initiator caspase-8, and concurrent processing and activation of the effector caspases 3 and 7. Interestingly, the expression of cellular FLICE inhibitory protein (c-FLIP) mRNA and the encoded protein, c-FLIPL, a catalytically inactive homologue of caspase-8, were down-regulated prior to or coincidently with the activation of caspase-8. Of the other known initiators, caspase-9, involved in the mitochondrial pathway, was activated/processed surprisingly late, only after the effector caspases 3/7. Further, we studied the potential involvement of the Fas- and tumor necrosis factor receptor (TNFR)-mediated signaling in the activation of caspase-8 by c-Myc. Blocking of the function of these death receptors by neutralizing antibodies against Fas ligand and TNF-α did not prevent the processing of caspase-8 or cell death. c-Myc was neither found to induce any changes in the expression of TNF-related apoptosis inducing ligand (TRAIL) or its receptor. These data suggest that caspase-8 does not become activated through an extrinsic but an “intrinsic/intracellular” apoptotic pathway unleashed by the down-regulation of c-FLIP by c-Myc. Moreover, ectopic expression of c-FLIPL inhibited the c-Myc-induced apoptosis. 相似文献
17.
Yoo BH Wang Y Erdogan M Sasazuki T Shirasawa S Corcos L Sabapathy K Rosen KV 《The Journal of biological chemistry》2011,286(45):38894-38903
Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand these mechanisms, we found that ras, a major oncogene, down-regulates protease caspase-2 (which initiates certain steps of the cellular apoptotic program) in malignant human and rat intestinal epithelial cells. This down-regulation could be reversed by inhibition of a protein kinase Mek, a mediator of Ras signaling. We also found that enforced down-regulation of caspase-2 in nonmalignant intestinal epithelial cells by RNA interference protected them from anoikis. Furthermore, the reversal of the effect of Ras on caspase-2 achieved by the expression of exogenous caspase-2 in detached ras-transformed intestinal epithelial cells promoted well established apoptotic events, such as the release of the pro-apoptotic mitochondrial factors cytochrome c and HtrA2/Omi into the cytoplasm of these cells, significantly enhanced their anoikis susceptibility, and blocked their long term growth in the absence of adhesion to the extracellular matrix. Finally, the blockade of the effect of Ras on caspase-2 substantially suppressed growth of tumors formed by the ras-transformed cells in mice. We conclude that ras-induced down-regulation of caspase-2 represents a novel mechanism by which oncogenic Ras protects malignant intestinal epithelial cells from anoikis, promotes their anchorage-independent growth, and allows them to form tumors in vivo. 相似文献
18.
Ekert PG Read SH Silke J Marsden VS Kaufmann H Hawkins CJ Gerl R Kumar S Vaux DL 《The Journal of cell biology》2004,165(6):835-842
Apoptosis after growth factor withdrawal or drug treatment is associated with mitochondrial cytochrome c release and activation of Apaf-1 and caspase-9. To determine whether loss of Apaf-1, caspase-2, and caspase-9 prevented death of factor-starved cells, allowing them to proliferate when growth factor was returned, we generated IL-3-dependent myeloid lines from gene-deleted mice. Long after growth factor removal, cells lacking Apaf-1, caspase-9 or both caspase-9 and caspase-2 appeared healthy, retained intact plasma membranes, and did not expose phosphatidylserine. However, release of cytochrome c still occurred, and they failed to form clones when IL-3 was restored. Cells lacking caspase-2 alone had no survival advantage. Therefore, Apaf-1, caspase-2, and caspase-9 are not required for programmed cell death of factor-dependent cells, but merely affect its rate. In contrast, transfection with Bcl-2 provided long-term, clonogenic protection, and could act independently of the apoptosome. Unlike expression of Bcl-2, loss of Apaf-1, caspase-2, or caspase-9 would therefore be unlikely to enhance the survival of cancer cells. 相似文献
19.
Kodama T Takehara T Hikita H Shimizu S Shigekawa M Li W Miyagi T Hosui A Tatsumi T Ishida H Kanto T Hiramatsu N Yin XM Hayashi N 《The Journal of biological chemistry》2011,286(16):13905-13913
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis. 相似文献
20.
Iglesias-Guimarais V Gil-Guiñon E Gabernet G García-Belinchón M Sánchez-Osuna M Casanelles E Comella JX Yuste VJ 《The Journal of biological chemistry》2012,287(10):7766-7779
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. 相似文献