首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in the gene for gamma-sarcoglycan (SGCG) located on HSA 13q12 are responsible for limb girdle muscular dystrophy (LGMD2C) in human. Here we report the cloning of the canine SGCG gene together with its genomic structure and several intragenic polymorphisms. The coding part of the canine SGCG contains seven exons spanning at least 70 kb of genomic DNA. The chromosome assignment of the canine SGCG gene to CFA 25q21-->q23 confirms that the canine syntenic group 10 corresponds to CFA 25 and also supports the findings of human-canine reciprocal chromosome painting.  相似文献   

3.
4.
Mai M  Qian C  Yokomizo A  Smith DI  Liu W 《Genomics》1999,55(3):341-344
Conductin or Axil, an Axin homolog, plays an important role in the regulation of beta-catenin stability in the Wnt signaling pathway. To facilitate the molecular analysis of the human gene, we isolated the human homolog, AXIN2. The cDNA contains a 2529-bp open reading frame and encodes a putative protein of 843 amino acids. Compared with rat and mouse homologs, AXIN2 shows an overall 89% amino acid identity. Several functional domains in this protein are highly conserved including the GRS (95.9%), GSK-3beta (96.3%), Dsh (98%), and beta-catenin (89.9%) domains. Radiation hybrid mapping localized the AXIN2 gene to human chromosome 17q23-q24, a region that shows frequent loss of heterozygosity in breast cancer, neuroblastoma, and other tumors. Human AXIN2 is thus a very strong candidate involved in multiple tumor types.  相似文献   

5.
Dyschromatosis symmetrica hereditaria (DSH) is a hereditary skin disease characterized by the presence of hyperpigmented and hypopigmented macules on extremities and face. The gene, or even its chromosomal location, for DSH has not yet been identified. In this study, two Chinese families with DSH were identified and subjected to a genomewide screen for linkage analysis. Two-point linkage analysis for pedigree A (maximum LOD score [Z(max)] = 7.28 at recombination fraction [theta] = 0.00) and pedigree B (Z(max) = 2.41 at theta = 0.00) mapped the locus for DSH in the two families to chromosome 6q. Subsequent multipoint analysis of the two families also provided additional support for the DSH gene being located within the region 6q24.2-q25.2, with Z(max) = 10.64. Haplotype analysis confined the locus within an interval of 10.2 Mbp, flanked by markers D6S1703 and D6S1708. The two families had no identical haplotype within the defined region, which suggests that the two families were different in origin. Further work on identification of the gene for DSH will open new avenues to exploration of the genetics of pigmentation.  相似文献   

6.
The urofacial (Ochoa) syndrome (UFS) is a rare autosomal recessive disease characterized by congenital obstructive uropathy and abnormal facial expression. The patients present with enuresis, urinary-tract infection, hydronephrosis, and voiding dysfunctions as a result of neurogenic bladders. To map the UFS gene, a genome screen using a combination of homozygosity-mapping and DNA-pooling strategies was performed in 20 selected patients, one patient pool, and three control pools (unaffected relatives). After analyses of 36 randomly chosen markers, D10S677 was identified as being linked to and associated with UFS, as suggested by a significant excess of homozygosity in patients compared with that in unaffected relatives (P < 10(-6)), as well as by the allelic-frequency differences between the patient pool and control pools. Ten additional markers flanking D10S677 and covering a 22-cM region then were analyzed to fine-map the UFS gene by use of haplotype (linkage disequilibrium) analysis. All 31 patients were found to be homozygous for two closely linked markers (D10S1726 and D10S198) located approximately 5 cM telomeric to D10S677, whereas only 12% of the unaffected relatives were homozygous for both markers (P < 10(-19)). Several patients are heterozygous at two markers immediately flanking D10S1726/D10S198, one on the centromeric side (D10S1433) and the other on the telomeric side (D10S603). These recombinational events place the UFS gene near D10S1726/D10S198 and within a 1-cM interval defined by D10S1433 and D10S603 on chromosome 10q23-q24.  相似文献   

7.
8.
9.
10.
11.
Type I hereditary spherocytosis results from a molecular defect in the beta-polypeptide of the erythrocyte cytoskeletal protein spectrin. Using a cDNA probe, we had previously assigned the gene for human erythrocyte beta-spectrin (SPTB) to chromosome 14 based upon analysis of its segregation in panels of human x rodent somatic cell hybrids (Winkelmann et al., 1988). Here we report the regional localization of this gene by in situ hybridization to 14q23----q24.2.  相似文献   

12.
13.
14.
15.
16.
17.
Assignment of the S-antigen gene (SAG) to human chromosome 2q24-q37   总被引:2,自引:0,他引:2  
We report the mapping of the gene coding for the S-antigen (48-kDa protein) to human chromosome 2 using somatic cell hybrids. In situ hybridization further confirms this assignment and regionally maps the gene to 2q24-q37.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号