首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pancreatic islet beta cells are very sensitive to oxidative stress, probably due to the extremely low level of anti-oxidant enzymes, particularly catalase. In contrast to beta cells, pancreatic alpha cells are significantly more resistant to diabetogenic toxins. However, whether alpha cells express a different level of catalase is not known. The aim of this study was to evaluate catalase expression in alpha cells of diabetic and non-diabetic mice. Diabetes was induced by a single injection of streptozotocin. After 3 weeks of persistent hyperglycemia, pancreatic tissues were collected. Catalase localization in alpha cells was identified by a dual-immunofluorescence staining with anti-glucagon and anti-catalase antibodies. In intact mice, intensive catalase and glucagon immunostaining was found in the peripheral area of islets. Merged images of glucagon and catalase show their localization in the same cell type, namely, alpha cells. Confocal microscopy indicated that the glucagon and catalase staining was distributed throughout the cytoplasm. Similar co-expression of catalase and glucagon was found in the alpha cells of diabetic animals. The results of this study show the intensive catalase expression in alpha cells of diabetic and non-diabetic mice. This knowledge may be useful to better understand the defense mechanisms of pancreatic alpha cells against oxidative stress.  相似文献   

2.
Nesfatin-1 is a recently discovered feeding inhibitory peptide encoded in the precursor protein, nucleobindin 2 (pronesfatin). Previous studies have shown pronesfatin expression in the brain, stomach and pancreas. However, the identity of cells that express nesfatin in the pancreas remain unknown. The objective of this study was to determine which cells in the pancreas of mice and rats express pronesfatin immunoreactivity. We found pronesfatin immunopositive cells exclusively in the pancreatic islets of both CD1 mice and Fischer 344 rats. Our novel results indicate that the insulin producing beta cells colocalize pronesfatin in the islets of both mice and rats. No colocalization of glucagon and pronesfatin was found in mice, while some glucagon positive cells were positive for pronesfatin in rat islets. The abundant presence of pronesfatin immunoreactivity and its colocalization with insulin suggests a potential role for pronesfatin-derived peptides in islet biology and glucose homeostasis in rodents.  相似文献   

3.
The disease diabetes mellitus arises as a consequence of a failure of the beta-cells in the islets of Langerhans of the pancreas to produce insulin in the amounts required to meet the needs of the body. Whole pancreas or islet transplants in patients with severe diabetes effectively restore insulin production. A lack of availability of donor pancreata requires the development of alternative sources of islets such as the ex vivo culture and differentiation of stem/progenitor cells. Earlier we discovered multipotential progenitor cells in islets isolated from adult human pancreata that express the neural stem cell marker nestin: nestin-positive islet-derived progenitor cells (NIPs). Recently it was shown that the exclusion of the Hoechst 33342 dye, which defines the pluripotential side population (SP) of hematopoietic stem cells, is mediated by the ATP-binding cassette transporter, ABCG2. Here we report that the human islet-derived NIPs contain a substantial subpopulation of SP cells that co-express ABCG2, MDR1, and nestin. Thus NIPs may be a potential source of adult pluripotential stem/progenitor cells useful for the production of islet tissue for transplantation into diabetic subjects.  相似文献   

4.
This study examined the effect of nitric oxide (NO) on the cytosolic free Ca(2+) concentration ([Ca(2+)](c)) of alpha-cells isolated from rat pancreatic islets. When extracellular glucose was reduced from 7 to 0 mM, about half of the alpha-cells displayed [Ca(2+)](c) oscillations. Nicardipine, a Ca(2+) channel blocker, terminated the oscillations, while thapsigargine, an inhibitor of Ca(2+)-ATPase on the endoplasmic reticulum, did not affect them, suggesting that the [Ca(2+)](c) oscillations were produced by periodic Ca(2+) influx via L-type voltage-operated Ca(2+) channels. NOC 7, an NO donor, did not cause any changes in [Ca(2+)](c) at 7 mM glucose, but reduced [Ca(2+)](c) or terminated [Ca(2+)](c) oscillations at 0 or 2.8 mM glucose. A similar inhibitory effect on [Ca(2+)](c) of alpha-cells was caused by 8-bromo-cGMP. When the [Ca(2+)](c) of alpha-cells was elevated by L-arginine in the presence of N(omega)-nitro-L-arginine, an NO synthase inhibitor, the subsequent application of NOC 7 and 8-bromo-cGMP reduced [Ca(2+)](c). As there is a direct relationship between [Ca(2+)](c) and glucagon release, these results suggest that the NO-cGMP system in rat pancreatic islets reduces glucagon release by suppressing [Ca(2+)](c) responses in alpha-cells.  相似文献   

5.
Summary The islet cells of the mammalian pancreas are comprised of four different endocrine cell types, each containing a specific hormone. Islet cells also contain two enzymes of the catecholamine biosynthetic pathway: tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). The cell lineage relationships of these different cell types have not been examined and it is not known whether, during development, they originate from the same or from different precursor populations. In this study we used immunocytochemical procedures to determine whether developing pancreatic cells express markers common to endocrine and exocrine cell types. We found that acinar cell precursors express AADC prior to the appearance of an exocrine marker and that the expression of AADC in acinar cells persists throughout embryogenesis to the first month of postnatal life. At this time, acinar cells do not contain AADC. We also found that exocrine cells containing AADC never express other islet-cell markers. These findings suggest that while acinar and islet cells both arise from precursor cells containing AADC, these progenitor cells do not express a combined endocrine-exocrine phenotype.  相似文献   

6.
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.  相似文献   

7.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

8.
Internalization of 125I-labelled atrial natriuretic peptide ([ 125I]ANP) by rat adrenal glomerulosa cells in vivo was investigated by means of an ultrastructural autoradiographic approach. One to 30 min after IV injection of [125I]ANP, silver grains were found, at the light microscope level, over all glomerulosa cells; coinjection of 20 micrograms of unlabelled ANP inhibited this binding by 64%. At the electron microscope level, the time-course study indicated maximal silver grain densities in plasma membranes 1 min after IV injection; grains were detected in mitochondria (external membranes and matrix) 2 min after injection, with maximal labelling at 15 min. The cytoplasmic matrix was labelled only 30 min after injection. During the time-course, labelling of nuclei, Golgi apparatus, and lysosomes was minimal. The data suggest that after binding to plasma membranes ANP is rapidly internalized and distributed within glomerulosa cells. The association of radioactivity with mitochondria suggests that ANP may have intracellular sites of action complementary to those on plasma membranes.  相似文献   

9.
Summary The surfaces of isolated pancreatic islet cells were studied with the scanning and transmission electron microscopes. Islets were isolated from the pancreas of Wistar rats by collagenase treatment and were incubated either in glucose-free medium or in 300 mg% glucose for one hour. Immunoreactive insulin (IRI) in the media of both control and experimental preparations was assayed. Islets were then transferred to 4% glutaraldehyde, buffered with cacodylate, pH 7.4, and prepared for scanning and transmission electron microscopy. Cell masses average 200 in diameter. Alpha cells appear pyramidal in shape, are about 8 in diameter and appear in groups. Beta cells are round or oval in shape and have an average diameter of 10 . Glucose stimulation raised the IRI value tenfold and increased the number of blebs and other surface irregularities per unit area of beta cell surface. Comparison with transmission electron micrographs suggests that the blebs are related to the process of emiocytosis.Supported by U.S.P.H.S. Grant AM-10151.  相似文献   

10.
The aims were to evaluate the role of cardiovascular nitric oxide (NO)-system in C-type natriuretic peptide (CNP) actions and to investigate receptor types and signaling pathways involved in this interaction. Wistar rats were infused with saline or CNP. Mean arterial pressure (MAP) and nitrites and nitrates (NOx) excretion were determined. NO synthase (NOS) activity and NOS expression (Western blot) were analyzed in atria, ventricle and aorta. CNP decreased MAP and increased NOx excretion. CNP estimulated NOS activity, inducing no changes on cardiac and vascular endothelial NOS expression. NOS activity induced by CNP was abolished by suramin and calmidazoliumand but it is not modified by anantin. CNP would interact with NPR-C receptor coupled via G proteins leading to the activation Ca(2+)-calmodulin dependent endothelial NOS, increasing NO production which would induce the reduction in cardiac myocyte contractility and ANP synthesis and secretion in right atria and the relaxation of vascular smooth muscle.  相似文献   

11.
Glucose homeostasis is controlled by the islets of Langerhans which are equipped with α-cells increasing the blood glucose level, β-cells decreasing it, and δ-cells the precise role of which still needs identifying. Although intercellular communications between these endocrine cells have recently been observed, their roles in glucose homeostasis have not been clearly understood. In this study, we construct a mathematical model for an islet consisting of two-state α-, β-, and δ-cells, and analyze effects of known chemical interactions between them with emphasis on the combined effects of those interactions. In particular, such features as paracrine signals of neighboring cells and cell-to-cell variations in response to external glucose concentrations as well as glucose dynamics, depending on insulin and glucagon hormone, are considered explicitly. Our model predicts three possible benefits of the cell-to-cell interactions: First, the asymmetric interaction between α- and β-cells contributes to the dynamic stability while the perturbed glucose level recovers to the normal level. Second, the inhibitory interactions of δ-cells for glucagon and insulin secretion prevent the wasteful co-secretion of them at the normal glucose level. Finally, the glucose dose-responses of insulin secretion is modified to become more pronounced at high glucose levels due to the inhibition by δ-cells. It is thus concluded that the intercellular communications in islets of Langerhans should contribute to the effective control of glucose homeostasis.  相似文献   

12.
It is known that various heart disorders are accompanied by an elevated level of atrial natriuretic peptide (ANP), a regulator of cardiovascular homeostasis, in the pericardial fluid. Which cells produce ANP in the pericardial cavity is unclear. Using immunoelectron microscopy, we examined ANP localization in human and rat pericardium. ANP-immunobinding material was found in granules of mast cells (MC) localized in pericardial connective tissue. In rat pericardium, the average MC size is 6.5 × 12.5 μm and the MC density is about 50 cells per 1 mm2 section area. For the human pericardium, these parameters are 9.1 × 13.6 μm and 10 cells per 1 mm2, respectively. The results show that MCs are probably implicated in the pericardial endocrine function and in controlling the ANP level in the pericardial cavity.  相似文献   

13.
目的 :探讨低氧对大鼠心脏钠尿肽C受体 (NPR C)表达的调节作用 ,以及血管钠肽 (VNP)对这一过程的影响。方法 :将大鼠随机分为 3组 :对照组、低氧组 (3~ 2 8d)和VNP(2 5~ 75 μg/kgbw) 低氧组 ,采用放射免疫的方法测定大鼠血浆心房钠尿肽 (ANP)的浓度 ,并采用定量PCR的方法分析NPR C的mRNA水平。结果 :低氧 2 8d大鼠血浆ANP浓度显著高于正常大鼠 (P <0 .0 5 ) ,而且每天注射 75 μg/kgbw的VNP使ANP浓度进一步升高 (P <0 .0 1)。低氧 3d对大鼠心脏NPR C的mRNA的量没有显著影响 ;低氧 7d使大鼠心脏NPR C的mRNA的拷贝数显著升高 (P <0 .0 5 ) ;低氧 14d、2 8d使大鼠心脏NPR C的mRNA的拷贝数进一步升高 (P <0 .0 1)。每日注射 2 5μg/kgbw的VNP对低氧诱导的大鼠心脏NPR C表达没有显著影响 ;5 0 μg/kgbw的VNP显著降低低氧大鼠心脏NPR C的表达 (P <0 .0 5 ) ;75 μg/kgbw的VNP进一步降低低氧大鼠心脏NPR C的表达 (P <0 .0 1)。 结论 :VNP可以升高低氧大鼠的血浆ANP水平 ;低氧可以使大鼠心脏NPR C表达增加 ,而且具有时间依赖性 ,而VNP对这一过程有抑制作用 ,并且呈剂量依赖性  相似文献   

14.
Diabetes is associated with disturbances in the normal levels of both insulin and glucagon, both of which play critical roles in the regulation of glycemia. Recent studies have found lipocalin-type prostaglandin D2 synthase (l-PGDS) to be an emerging target involved in the pathogenesis of type-2 diabetes. This study focused on the effect of l-PGDS on glucagon secretion from cultured pancreatic Alpha TC-1 Clone 6 cells. When cells were treated with various concentrations of l-PGDS (0, 10, 50, and 100 ug/ml) for 2 h in 1 mM glucose; glucagon secretion decreased to 670±45, 838±38, 479±11, and 437±45 pg/ml, respectively. In addition, pancreatic islets were isolated from C57BL/6 mice and stained for prostaglandin D2 receptors, DP1 and DP2, using immunohistochemistry. Our results showed that these islets express only the DP1 receptor. Pancreatic islets were then stained for alpha and beta cells, as well as DP1, to find the primary location of the receptor within the islets using immunofluorescence. Interestingly, DP1 receptor density was found primarily in alpha cells rather than in beta cells. Our study is the first to report a correlation between l-PGDS and glucagon secretion in alpha cells. Based on our obtained results, it can be concluded that higher concentrations of l-PGDS significantly reduced the secretion of glucagon in alpha cells, which may contribute to the pathogenesis of diabetes as well as offer a novel therapeutic site for the treatment of diabetes.  相似文献   

15.
Summary A line of kidney cells (PK,) which does not possess measurable ANP binding but has an active particulate guanylate cyclase has been identified. The physical characteristics of this enzyme were compared with those of particulate guanylate cyclase and ANP receptors isolated from rat lung. Although receptor and enzyme appear to reside on the same protein in the lung while the cyclase from PK1 cells does not possess ANP binding activity, these proteins exhibit identical physical characteristics. Guanylate cyclase from PK1 cells and rat lung and ANP receptor from lung co-eluted during gel filtration chromatography, with a Stokes radius of 6.1 nm. Also, these activities co-migrated through sucrose density gradients with S20,w values of 10.4 to 10.9. Using these parameters, a molecular weight of about 270 kD was estimated for all three activities. Furthermore, these enzyme activities exhibited similar mobilities in isoelectric focusing gels, with a pI of 6.1. Thus, although particulate guanylate cyclase from lung presumably possesses receptor binding activity, it is physically identical to a form of this enzyme associated with no measurable binding activity. Possible explanations for these observations are discussed.  相似文献   

16.
Islet transplantation can reverse hyperglycaemia in Type 1 diabetes patients. One problem in islet transplantation is a loss of beta cell mass as well as blunted glucagon responses from the grafted islets. It has been suggested that alpha cell loss is associated with close contact of the alpha cells with the implantation organ. In the present study we made use of microencapsulation, where transplanted islets are not in direct contact with the host implantation site. After transplantation, the number of glucagon cells stained per microencapsulated islet section was increased whereas the number of insulin cells stained was decreased. DNA content of the islets was reduced, as was insulin content, whereas glucagon content was unchanged. This indicates that cell number in transplanted microencapsulated islets diminishes, which can be accounted for by loss of beta cells. However, in contrast to previous studies using non-encapsulated islets, alpha cell number seems to be maintained.  相似文献   

17.
This study investigated the effect of water deprivation on the expression of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) mRNA, and the ability of NPR-B to generate cGMP in the Spinifex Hopping mouse, Notomys alexis. This rodent is a native of central and western Australia that is well adapted to survive in arid environments. Initially, CNP and NPR-B cDNAs (partial for NPR-B) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. RT-PCR analysis showed CNP mRNA expression in the kidney, proximal and distal colon and small intestine, whilst NPR-B mRNA expression was found in the kidney, proximal and distal colon and the atria. Using a semi-quantitative multiplex PCR technique, the expression of renal CNP and NPR-B mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control hopping mice (access to water). Water deprivation significantly decreased the relative levels of CNP and NPR-B mRNA expression in both the 7- and 14-day water-deprived hopping mice, when compared to control hopping mice. In contrast, the ability of CNP to stimulate cGMP production was significantly increased after 14 days of water deprivation. This study shows that alterations in the renal CNP/NPR-B system may be an important physiological adjustment when water is scarce.  相似文献   

18.
19.
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP = 0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.  相似文献   

20.
C-type natriuretic peptide (CNP) is recognized as a paracrine factor acting locally in the brain and periphery. To assess the role of CNP in teleost fish, a cDNA encoding a CNP precursor was initially cloned from the eel brain. CNP message subsequently detected by ribonuclease protection assay, using the cDNA as probe, was most abundant in the brain followed by liver, gut, gills, and heart. Expression was generally higher in freshwater (FW) than in seawater (SW) eels, but not in the brain. Plasma CNP concentration measured by a newly developed homologous radioimmunoassay for eel CNP was higher in FW than in SW eels. The CNP concentration was also higher in the heart of FW eels but not in the brain. These results show that CNP is abundantly synthesized in peripheral tissues of FW eels and secreted constitutively into the circulation. Therefore, CNP is a circulating hormone as well as a paracrine factor in eels. Together with our previous demonstration that CNP-specific receptor expression is enhanced in FW eels, it appears that CNP is a hormone important for FW adaptation. Because atrial NP (ANP) promotes SW adaptation in eels, CNP and ANP, despite high sequence identity, appear to have opposite effects on environmental adaptation of the euryhaline fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号