首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

2.
DNA methylation is known to regulate several prokaryotic replication origins. In particular, the Escherichia coli chromosomal origin oriC and the pMB1 plasmid origin (which is homologous to the ColE1 origin) replicate poorly when hemimethylated at dam (GATC) sites. Because the mismatch repair protein MutH is known to recognize hemimethylated dam sites, its role in the replication of these origins was investigated. The results presented here show that the mutH gene product is partially responsible for the poor replication of the pMB1 origin when hemimethylated but has no effect on the replication of oriC. Methylation levels at individual dam sites suggest that the MutH protein binds to an inverted repeat in the pMB1 replication primer promoter. These findings suggest a mechanism for the coordinated control of DNA repair and replication.  相似文献   

3.
GATC sequence and mismatch repair in Escherichia coli.   总被引:11,自引:2,他引:9       下载免费PDF全文
The Escherichia coli mismatch repair system greatly improves DNA replication fidelity by repairing single mispaired and unpaired bases in newly synthesized DNA strands. Transient undermethylation of the GATC sequences makes the newly synthesized strands susceptible to mismatch repair enzymes. The role of unmethylated GATC sequences in mismatch repair was tested in transfection experiments with heteroduplex DNA of phage phi 174 without any GATC sequence or with two GATC sequences, containing in addition either a G:T mismatch (Eam+/Eam3) or a G:A mismatch (Bam+/Bam16). It appears that only DNA containing GATC sequences is subject to efficient mismatch repair dependent on E. coli mutH, mutL, mutS and mutU genes; however, also in the absence of GATC sequence some mut-dependent mismatch repair can be observed. These observations suggest that the mismatch repair enzymes recognize both the mismatch and the unmethylated GATC sequence in DNA over long distances. The presence of GATC sequence(s) in the substrate appears to be required for full mismatch repair activity and not only for its strand specificity according to the GATC methylation state.  相似文献   

4.
The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then to S-adenosylmethionine. The enzyme methylates an oligonucleotide containing two dam sites and a 879 bp PCR product with four sites in a fully processive reaction. On lambda-DNA comprising 48,502 bp and 116 dam sites, E. coli dam scans 3000 dam sites per binding event in a random walk, that on average leads to a processive methylation of 55 sites. Processive methylation of DNA considerably accelerates DNA methylation. The highly processive mechanism of E. coli dam could explain why small amounts of E. coli dam are able to maintain the methylation state of dam sites during DNA replication. Furthermore, our data support the general rule that solitary DNA methyltransferase modify DNA processively whereas methyltransferases belonging to a restriction-modification system show a distributive mechanism, because processive methylation of DNA would interfere with the biological function of restriction-modification systems.  相似文献   

5.
The oriC unwinding by dam methylation in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
H Yamaki  E Ohtsubo  K Nagai    Y Maeda 《Nucleic acids research》1988,16(11):5067-5073
It has been shown that dam methylation is important in the regulation of initiation of DNA replication in E.coli. The question then arises as to whether dam methylation in the oriC region mediates any structural changes in DNA involved in the regulation of initiation of DNA replication. We demonstrate that the thermal melting temperature of the oriC region is lowered by adenine methylation at GATC sites. The regulation of initiation of DNA replication by dam methylation may be attributed to the ease of unwinding at GATC sites in oriC.  相似文献   

6.
W Messer  U Bellekes    H Lother 《The EMBO journal》1985,4(5):1327-1332
Methylation of GATC sites by the dam methylase is required for efficient initiation of DNA replication at the replication origin, oriC, of Escherichia coli. This is demonstrated by the inability of minichromosomes to be maintained in dam mutant strains. The requirement for methylated GATC sites is less stringent in vitro than in vivo. The time required for complete methylation of the origin region apparently determines the minimal spacing of replication forks on the chromosome.  相似文献   

7.
Methyl-directed DNA mismatch repair in Escherichia coli   总被引:5,自引:0,他引:5  
Some of the molecular aspects of methyl-directed mismatch repair in E. coli have been characterized. These include: mismatch recognition by mutS protein in which different mispairs are bound with different affinities; the direct involvement of d(GATC) sites; and strand scission by mutH protein at d(GATC) sequences with strand selection based on methylation of the DNA at those sites. In addition, communication over a distance between a mismatch and d(GATC) sites has been implicated. Analysis of mismatch correction in a defined system (Lahue et al., unpublished) should provide a direct means to further molecular aspects of this process.  相似文献   

8.
9.
A L Lu 《Journal of bacteriology》1987,169(3):1254-1259
The effect of the number and position of DNA adenine methylation (dam) sites, i.e., d(GATC) sequences, on mismatch repair in Escherichia coli was investigated. The efficiency of repair was measured in an in vitro assay which used an f1 heteroduplex containing a G/T mismatch within the single EcoRI site. Both an increase in the number of dam sites and a shortened distance between dam site and mismatched site increased the efficiency of mismatch repair. The sequences adjacent to d(GATC) also affected the efficiency of methylation-directed mismatch repair. Furthermore, heteroduplexes with one extra dam site located close to either the 5' or 3' end of the excised base increased the repair efficiency to about the same extent. The findings suggest that the mismatch repair pathway has no preferred polarity.  相似文献   

10.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

11.
The distribution of the methylatable sites GATC and CCATGG was studied by analyzing the molecular average size of restriction fragments of E. coli DNA. Both sites were found to be randomly distributed, reflecting a random pattern of methylation. The methylation pattern of specific sequences such as the origin of replication and rRNA genes has been studied in wild type E. coli and a methylation deficient (dam- dcm-) mutant. These sequences were found to be methylated in wild type cells and unmethylated in the mutant indicating that there is no effect of the state of methylation of these sequences on their expression. Analysis of the state of methylation of GATC sites in newly replicating DNA using the restriction enzyme Dpn I (cleaves only when both strands are methylated) revealed no detectable hemimethylated DNA suggesting that methylation occurs at the replication fork. Taking together the results presented here and previously published data (5), we arrive at the conclusion that the most likely function of E. coli DNA methylations is probably in preventing nuclease activity.  相似文献   

12.
Escherichia colidam cells have an active but non-directed mismatch repair system; therefore, assembly of MutSLH complex at a mismatched base pair can result in MutH-mediated cleavage of GATC sites in both DNA strands. Unpaired double-strand breaks on a fraction of the replication errors occurring in dam cells presumably cause cell death, selectively eliminating these putative mutants from the population. We show that E. colidam cells transformed with plasmids containing either the mutS, mutL or mutH gene display a mutation frequency three to eight times lower than that of the parental dam strain, due to increased mismatch-stimulated cell killing. Transformed strains are also more susceptible to killing by the base analogue 2-aminopurine. However, dam and dam transformed cells have similar duplication time, proportion of live/dead cells and morphology.  相似文献   

13.
14.
The molecular mechanism of how the dam-methylation status of the DNA is recognized during DNA mismatch repair by the strand discrimination endonuclease MutH is not known. A comparison of the crystal structure of MutH with those of co-crystal structures of several restriction endonucleases, together with a multiple sequence alignment of MutH and related proteins suggested that Phe94, Arg184 and Tyr212 could be involved in discrimination between a methylated or unmethylated adenine in the d(GATC) sequence. A mutational analysis revealed that the variants R184A and Y212S, but not F94A, were substantially reduced in their ability to complement a mismatch repair deficiency in a mutH(-) Escherichia coli strain. In vitro, R184A displayed a strongly reduced endonuclease activity, whereas the Y212S variant has almost completely lost its preference for cleaving the unmethylated strand at hemimethylated d(GATC) sites. Furthermore, the Y212 variant can cleave fully methlyated d(GATC) sites at a comparable rate to unmethylated d(GATC) sites. This demonstrates that Tyr212 is an important, if not the only amino acid residue in MutH for sensing the methylation status of the DNA.  相似文献   

15.
16.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

17.
18.
DNA loop repair by Escherichia coli cell extracts   总被引:2,自引:0,他引:2  
The nick-directed DNA repair efficiency of a set of M13mp18-derived heteroduplexes containing 8-, 12-, 16-, 22-, 27-, 45-, and 429-nucleotide loops was determined by in vitro assay. Unpaired nucleotides of each heteroduplex reside within overlapping recognition sites for two restriction endonucleases, permitting independent evaluation of repair occurring on either DNA strand. Our results show that a strand break located either 3' or 5' to the loop is sufficient to direct heterology repair to the nicked strand in Escherichia coli extracts. Strand-specific repair by this system requires Mg2+ and the four dNTPs and is equally efficient on insertions and deletions. This activity is distinct from the MutHLS mismatch repair pathway. Strand specificity and repair efficiency are largely independent of the GATC methylation state of the DNA and presence of the products of mismatch repair genes mutH, mutL, and mutS. This study provides evidence for a loop repair pathway in E. coli that is distinct from conventional mismatch repair.  相似文献   

19.
The DNA methylation is a post-replicative event that provides secondary information to that formed by DNA. Addition of this information involves DAM methyltransferase, which methylates DNA on specific sites (5'-GATC-3'). This modification of DNA may play a role in regulating various processes in eukaryote or prokaryote cells. It was well understood that deoxyadenosine methyltransferase (DAM) methylates the adenine of the GATC sequence. Following DNA replication, however, DNA is transiently hemimethylated, and the new strand is then methylated by DAM. In Escherichia coli, removing the dam gene produces several phenotypes indicating multiple functions of methylation: (i) modulation of gene expression, (ii) DNA repair, (iii) initiation of replication, and (iv) stabilising the chromosome.  相似文献   

20.
M Szyf  E Meisels    A Razin 《Journal of bacteriology》1986,168(3):1487-1490
The effect of methylation of GATC sites in Escherichia coli DNA on the formation of single-strand breaks was studied with dam+, dam mutant, and Dam-overproducer strains. Single-strand breaks have been observed in dam mutant cells predominantly at TpT and, to a lesser extent, at CpC. In dam mutant cells harboring pTP166 (a plasmid containing the dam gene), no such nicks were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号