首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A taxonomic revision of Catalpa (Bignoiaceae), a genus of perennial trees frequently used in horticulture as garden and street trees, is provided. Eight natural species and two hybrid species are recognized, four in sect. Catalpa, four in sect. Macrocatalpa, and two hybrid species in sect. Catalpa. Although C. punctata has been used for one of the tropical species, C. macrocarpa is the correct scientific name. Catalpa tibetica is synonymous with C. bignonioides, C. fargesii with C. bungei, and C. obovata with C. macrocarpa. Lectotypes are designated for: Bignonia cassinoides, Bignonia longisiliqua, Bignonia longissima, Catalpa Walter, Catalpa subsect. Corymbosae, Catalpa bignonioides var. kaempferi, Catalpa bungei, Catalpa bungei var. heterophylla, Catalpa bungei var. intermedia, Catalpa domingensis, Catalpa fargesii, Catalpa henryi, Catalpa ×hybrida, Catalpa ovata var. flavescens, Catalpa punctata var. lepidota, Catalpa purpurea, Catalpa syringifolia var. pulverulenta, Catalpa sutchuensis, Catalpa ×teasii, and Cumbulu. Second-step lectotypes are designated for: Catalpa duclouxii, Catalpa ekmaniana, Catalpa oblongata, Catalpa obovata, and Catalpa ovata. Neotypes are designated for: Bignonia triloba, Catalpa aureovittata, Catalpa bignonioides var. variegata, Catalpa ×erubescens, Catalpa ×erubescens f. purpurea, Catalpa ×galleana, Catalpa ×hybrida var. atropurpurea, Catalpa japonica, Catalpa syringifolia var. aurea, Catalpa syringifolia var. koehnei, Catalpa syringifolia var. nana, Catalpa ×teasiana, and Catalpa umbraculifera.  相似文献   

3.

Key message

A novel Wx-B1 allele was characterized; a transposon insertion resulted in the loss of its function, which is different from the previously reported gene silencing mechanisms at the Wx-B1 locus.

Abstract

The waxy protein composition of 53 Chinese wheat landraces was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis; of these, 10 did not show the expression of Wx-A1 (four accession) or Wx-B1 (six accessions) protein. The results of molecular marker detection revealed that the Wx-B1 allele (Wx-B1n) showed normal expression, inconsistent with the findings of SDS-PAGE for the Xiaobaipi accession. Further cloning of the 9160-bp region covering the Wx-B1 coding region and 3′-downstream region revealed that a 2178-bp transposon fragment had been inserted at 2462 bp within the tenth exon of Wx-B1n ORF, leading to the absence of Wx-B1 protein. Sequence analysis indicated that the insertion possessed the structural features of invert repeat and target repeat elements, we deduced that it was a transposon. Further PCR analysis revealed that this fragment had moved, but not copied itself, from 3B chromosome to the current location in Wx-B1n. Therefore, the reason for the inactivation of Wx-B1n was considerably different from those for the inactivation of Wx-B1b, Wx-B1k, and Wx-B1m; to our knowledge, this kind of structural mutation has never been reported in Wx-B1 alleles. This novel allele is interesting, because it was not associated with the deletion of other quality-related genes included in the 67 kb region lost with the common null allele Wx-B1b. The null Wx-B1n might be useful for investigating gene inactivation and expression as well as for enriching the genetic resource pool for the modification of the amylose/amylopectin ratio, thereby improving wheat quality.
  相似文献   

4.

Key message

We cloned TaSdr - A1 gene, and developed a gene-specific marker for TaSdr - A1 . A QTL for germination index at the TaSdr - A1 locus was identified in the Yangxiaomai/Zhongyou 9507 RIL population.

Abstract

Pre-harvest sprouting (PHS) affects yield and end-use quality in bread wheat (Triticum aestivum L.). In the present study we found an association between the TaSdr-A1 gene and PHS tolerance in bread wheat. TaSdr-A1 on chromosome 2A was cloned using a homologous cloning approach. Sequence analysis of TaSdr-A1 revealed an SNP at position 643, with the G allele being present in genotypes with lower germination index (GI) values and A in those with higher GI. These alleles were designated as TaSdr-A1a and TaSdr-A1b, respectively. A cleaved amplified polymorphism sequence (CAPS) marker Sdr2A based on the SNP was developed, and linkage mapping and QTL analysis were conducted to confirm the association between TaSdr-A1 and seed dormancy. Sdr2A was located in a 2.9 cM interval between SSR markers Xgwm95 and Xgwm372. A QTL for GI at the TaSdr-A1 locus explained 6.6, 7.3, and 8.2 % of the phenotypic variances in a Yangxiaomai/Zhongyou 9507 RIL population grown at Beijing, Shijiazhuang, and the averaged data from the two environments, respectively. Two sets of Chinese wheat cultivars used for validating the TaSdr-A1 polymorphism and the corresponding gene-specific marker Sdr2A showed that TaSdr-A1 was significantly associated with GI. Among 29 accessions with TaSdr-A1a, 24 (82.8 %) were landraces, indicating the importance of Chinese wheat landraces as sources of PHS tolerance. This study identified a novel PHS resistance allele TaSdr-A1a mainly presented in Chinese landraces and it is likely to be the causal gene for QPhs.ccsu-2A.3, providing new information for an understanding of seed dormancy.
  相似文献   

5.
6.

Key message

A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase.

Abstract

Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
  相似文献   

7.
The somatic embryogenic regeneration system is an ideal model system to study the regulation of early developmental processes and morphogenesis in gymnosperms. We have previously generated five larch (Larix leptolepis) LaMIR166a overexpression cell lines. The germination rates of mature somatic embryos in transgenic and wild-type (WT) lines were calculated and the results showed that overexpression of the miR166a precursor (LaMIR166a) markedly enhanced germination, especially in the a-3, a-4, and a-5 lines. The relative expression of LaMIR166a and miR166a in the LaMIR166a overexpression lines was higher than in the WT control line during the germination process, whereas the expression levels of LaHDZ31–34 increased markedly throughout germination, potentially as a result of feedback regulation of miR166. The effect of miR166a on auxin biosynthesis and signaling genes was also studied. During germination, mRNA levels of Nitrilase (LaNIT), Auxin response factor1 (LaARF1), and LaARF2 were markedly higher in LaMIR166a overexpressing lines. These results indicated that indole-3-acetic acid (IAA) synthesis is required for germination in L. leptolepis. Further exogenous application of IAA at different concentrations showed that 2 mg L?1 IAA clearly promoted germination, resulting in a 56% germination rate for L. leptolepis somatic embryos. This shows that IAA plays a vital role in controlling the germination ability of someatic embryos in L. leptolepis. Our results suggest that miR166a and LaHDZ31–34 have important roles in auxin biosynthesis and signaling during the germination of somatic embryos in L. leptolepis.  相似文献   

8.
9.
10.

Key message

Eight R2R3 - MYB genes in tartary buckwheat were identified, and their expression patterns were comprehensively analyzed, which reveals role in plant response to abiotic stresses.

Abstract

The proteins of the R2R3-MYB superfamily play key roles in the growth and development processes as well as defense responses in plants. However, their characteristics and functions have not been fully investigated in tartary buckwheat (Fagopyrum tataricum), a strongly abiotic resistant coarse cereal. In this article, eight tartary buckwheat R2R3-MYB genes were isolated with full-length cDNA and DNA sequences. Phylogenetic analysis of the members of the R2R3-MYB superfamily between Arabidopsis and tartary buckwheat revealed that the assumed functions of the eight tartary buckwheat R2R3-MYB proteins are divided into five Arabidopsis functional subgroups that are involved in abiotic stress. Expression analysis during abiotic stress and exogenous phytohormone treatments identified that the eight R2R3-MYB genes responded to one or more treatments. This study is the first comprehensive analysis of the R2R3-MYB gene family in tartary buckwheat under abiotic stress.
  相似文献   

11.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

12.

Key message

Transgenic tall fescue plants expressing RNAi constructs of essential genes of Rhizoctonia solani were resistant to R. solani.

Abstract

Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species widely used for home lawns and on golf courses in North Carolina and other transition zone states in the US. The most serious and frequently occurring disease of tall fescue is brown patch, caused by a basidiomycete fungus, Rhizoctonia solani. This research demonstrates resistance to brown patch disease achieved by the application of host induced gene silencing. We transformed tall fescue with RNAi constructs of four experimentally determined “essential” genes from R. solani (including genes encoding RNA polymerase, importin beta-1 subunit, Cohesin complex subunit Psm1, and a ubiquitin E3 ligase) to suppress expression of those genes inside the fungus and thus inhibit fungal infection. Four gene constructs were tested, and 19 transgenic plants were obtained, among which 12 plants had detectable accumulation of siRNAs of the target genes. In inoculation tests, six plants displayed significantly improved resistance against R. solani. Lesion size was reduced by as much as 90 %. Plants without RNAi accumulation did not show resistance. To our knowledge, this is the first case that RNAi constructs of pathogen genes introduced into a host plant can confer resistance against a necrotrophic fungus.
  相似文献   

13.
14.
15.

Key message

pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress.

Abstract

Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
  相似文献   

16.
17.

Key message

VcFLS from Vaccinium corymbosum promoted myricetin biosynthesis in Arabidopsis thaliana and VcFLS expression was induced by salicylic acid.

Abstract

Flavonoids are polyphenols with important functions in pigmentation, UV filtration, and symbiotic nitrogen fixation. Flavonols are a class of flavonoids that are produced by the desaturation of dihydroflavanols in a reaction that is catalyzed by flavonol synthase (FLS). In the study reported here, we cloned the full-length cDNA of FLS (designated as VcFLS) from Vaccinium corymbosum (blueberry) using rapid amplification of cDNA ends (RACE). The cDNA contained a 1005-bp open reading frame that encoded a 334-amino acid protein. Phylogenetic analysis showed that VcFLS was closely related to FaFLS, a flavonol synthase that catalyzed the formation of kaempferol and had little effect on the formation of quercetin. Quantitative RT-PCR analysis demonstrated that VcFLS was expressed in all of the tissues tested, with particularly high expression in the petals and young leaves (both green and red). The flavanols myricetin and quercetin also occurred in all of these tested tissues, with the highest levels detected in mature leaves. The expression of VcFLS was not consistent with the accumulation of quercetin and myricetin in different tissues, nor were the expressions of VcFLS, VcPAL, VcCHS, VcF3H, and VcF3′5′H consistent with the accumulation of the quercetin during fruit development. However, the change in the trend of VcCHS and VcF3H expression was similar with myricetin accumulation during fruit development. Expression profiling analysis revealed that VcFLS expression was induced by salicylic acid, a phytohormone involved in plant defense against pathogens, and was suppressed by gibberellic acid, a phytohormone involved in various aspects of plant development. Heterologous expression of VcFLS in Arabidopsis thaliana increased the content of myricetin, but did not affect quercetin content. Thus, we conclude that VcFLS is a key enzyme in the flavonol biosynthetic pathway and would appear to be involved in the plant defense response.
  相似文献   

18.

Key message

Using map-based cloning, we delimited the Ms - cd1 gene responsible for the male sterile phenotype in B. oleracea to an approximately 39-kb fragment. Expression analysis suggests that a new predicted gene, a homolog of the Arabidopsis SIED1 gene, is a potential candidate gene.

Abstract

A dominant genic male sterile (DGMS) mutant 79-399-3 in Brassica oleracea (B. oleracea) is controlled by a single gene named Ms-cd1, which was genetically mapped on chromosome C09. The derived DGMS lines of 79-399-3 have been successfully applied in hybrid cabbage breeding and commercial hybrid seed production of several B. oleracea cultivars in China. However, the Ms-cd1 gene responsible for the DGMS has not been identified, and the molecular basis of the DGMS is unclear, which then limits its widespread application in hybrid cabbage seed production. In the present study, a large BC9 population with 12,269 individuals was developed for map-based cloning of the Ms-cd1 gene, and Ms-cd1 was mapped to a 39.4-kb DNA fragment between two InDel markers, InDel14 and InDel24. Four genes were identified in this region, including two annotated genes based on the available B. oleracea annotation database and two new predicted open reading frames (ORFs). Finally, a newly predicted ORF designated Bol357N3 was identified as the candidate of the Ms-cd1 gene. These results will be useful to reveal the molecular mechanism of the DGMS and develop more practical DGMS lines with stable male sterility for hybrid seed production in cabbage.
  相似文献   

19.

Key message

A quantitative trait locus  qRfg3 imparts recessive resistance to maize Gibberella stalk rot. qRfg3 has been mapped into a 350-kb interval and could reduce the disease severity index by ~26.6%.

Abstract

Gibberella stalk rot, caused by the fungal pathogen Fusarium graminearum, severely affects maize yield and grain quality worldwide. To identify more resistance quantitative trait loci (QTLs) against this disease, we analyzed a recombinant inbred line (RIL) population derived from a cross between resistant H127R and susceptible C7-2 inbred lines. Within this population, maize resistance to Gibberella stalk rot had high broad-sense heritability. A major QTL, qRfg3, on chromosome 3 was consistently detected across three field trials, accounting for 10.7–19.4% of the total phenotypic variation. Using a progeny-based sequential fine-mapping strategy, we narrowed qRfg3 down to an interval of ~350 kb. We further demonstrated that qRfg3 is a recessive resistance locus to Gibberella stalk rot that reduced the disease severity index by ~26.6%. Both the gene location and recessive genetic mode distinguish qRfg3 from other stalk rot resistance loci. Hence, qRfg3 is valuable as a complement to existing resistance QTLs to improve maize resistance to Gibberella stalk rot.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号