共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antiviral defense mechanism and has been
shown to be of great potential in plant reverse genetics. Circumvention of plant transformation, methodological simplicity,
robustness, and speedy results makes VIGS an attractive alternative instrument in functional genomics, even in a high throughput
fashion. The system is well established in Nicotiana benthamiana, and efforts are being made to improve VIGS in other species, including monocots. Here, we discuss the issues specific to
the application of VIGS technology to determine gene function, which has revealed the roles of a variety of genes in disease
resistance, abiotic stress, cellular signaling and secondary metabolite biosynthesis.
M. R. Godge and A. Purkayastha made equal contributions and hence should be treated as joint first authors for this paper. 相似文献
9.
10.
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because
it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant
functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in
development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss
the development and application of virus-induced gene silencing in plant functional genomics. 相似文献
11.
Xionghui Zhong Xue Yuan Ze Wu Muhammad Ali Khan Jin Chen Xiaoxin Li Benhe Gong Yang Zhao Jian Wu Chenyu Wu Mingfang Yi 《Plant cell reports》2014,33(2):301-312
Key message
Virus-induced gene silencing (VIGS) system could be performed successfully in Gladiolus hybridus with vacuum infiltration of cormels and young plants.Abstract
Functional analysis of genes in gladiolus has previously been impractical due to the lack of an efficient stable genetic transformation method. However, virus-induced gene silencing (VIGS) is effective in some plants which are difficult to transform through other methods. Although the Tobacco rattle virus (TRV)-based VIGS system has been developed and used for verifying gene functions in diverse plants, an appropriate TRV-VIGS approach for gladiolus has not been established yet. In this report we describe the first use of the TRV-VIGS system for gene silencing in gladiolus. Vacuum infiltration of cormels and young plants with the GhPDS-VIGS vector effectively down-regulated the PHYTOENE DESATURASE ortholog GhPDS gene and also resulted in various degrees of photobleaching in Gladiolus hybridus. The reduction in GhPDS expression was tested after TRV-based vector infection using real-time RT-PCR. In addition, the progress of TRV infection was detected by fluorescence visualization using a pTRV2: CP-GFP vector. In conclusion, the TRV-mediated VIGS described here will be an effective gene function analysis mechanism in gladiolus. 相似文献12.
Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley 总被引:18,自引:3,他引:18 下载免费PDF全文
Hein I Barciszewska-Pacak M Hrubikova K Williamson S Dinesen M Soenderby IE Sundar S Jarmolowski A Shirasu K Lacomme C 《Plant physiology》2005,138(4):2155-2164
13.
14.
Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics 总被引:5,自引:0,他引:5 下载免费PDF全文
Forward genetic screens have led to the isolation of several genes involved in secondary cell wall formation. A variety of evidence, however, suggests that the list of genes identified is not exhaustive. To address this problem, microarray data have been generated from tissue undergoing secondary cell wall formation and used to identify genes that exhibit a similar expression pattern to the secondary cell wall-specific cellulose synthase genes IRREGULAR XYLEM1 (IRX1) and IRX3. Cross-referencing this analysis with publicly available microarray data resulted in the selection of 16 genes for reverse genetic analysis. Lines containing an insertion in seven of these genes exhibited a clear irx phenotype characteristic of a secondary cell wall defect. Only one line, containing an insertion in a member of the COBRA gene family, exhibited a large decrease in cellulose content. Five of the genes identified as being essential for secondary cell wall biosynthesis have not been previously characterized. These genes are likely to define entirely novel processes in secondary cell wall formation and illustrate the success of combining expression data with reverse genetics to address gene function. 相似文献
15.
RNAi作为一种基因沉默的分子生物学技术,广泛应用于生物基因功能研究.在昆虫RNAi研究中,病毒诱导的基因沉默(Virus-induced gene silencing,VIGS)技术是一种将dsRNA导入昆虫体内的独特策略.目前,这种方法在半翅目和鳞翅目昆虫的研究中有诸多报道.通过携带靶标昆虫基因片段的重组病毒载体侵染寄主植物,病毒在复制过程中形成dsRNA.实验昆虫取食被侵染的寄主植物后会摄入大量的dsRNA,从而达到dsRNA导入的目的.与其它dsRNA导入方法相比,VIGS技术具有高效、高通量、昆虫接受度高等优势.本文综合分析了 VIGS技术的作用机理、应用研究、影响效率的因素及其优缺点,将来应围绕这些问题进一步深化该技术在昆虫学研究中的应用. 相似文献
16.
17.
Virus-induced gene silencing as a tool for functional genomics in a legume species 总被引:14,自引:0,他引:14
Constantin GD Krath BN MacFarlane SA Nicolaisen M Johansen IE Lund OS 《The Plant journal : for cell and molecular biology》2004,40(4):622-631
Virus-induced gene silencing (VIGS) is an attractive reverse-genetics tool for studies of gene function. However, efficient VIGS has only been accomplished in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on Pea early browning virus (PEBV) would produce recognizable phenotypes in Pisum sativum. A plasmid vector of PEBV was modified to allow agro-inoculation and insertion of heterologous sequences. cDNA fragments of the P. sativum phytoene desaturase (PDS), LEAFY (LFY) and KORRIGAN1 (KOR1) homologues were inserted into the PEBV RNA2 vector, replacing the genes required for nematode transmission. Pisum sativum inoculated with PEBV carrying a fragment of PsPDS developed characteristic photo-bleached leaves and this phenotype was associated with a significant reduction in PsPDS mRNA. The P. sativum homologue of LFY is known as UNIFOLIATA (UNI). Plants inoculated with PEBV carrying a fragment of UNI developed distorted flowers and leaves with modified architecture, which are also observed in UNI-mutants. In Arabidopsis thaliana, the KOR1-mutant is characterized by an extreme dwarf phenotype. Pisum sativum plants inoculated with PEBV carrying a fragment of PsKOR1 displayed a significant reduction in height and inhibition of root growth. The PEBV VIGS vector did not affect the ability of P. sativum to flower, set seeds, and form nodules characteristic of symbiosis with rhizobium. These results suggest that the PEBV vector can be applied to functional genomics in a legume species to study genes involved in a wide range of biological processes. 相似文献
18.
Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing 总被引:1,自引:0,他引:1
Anand A Vaghchhipawala Z Ryu CM Kang L Wang K del-Pozo O Martin GB Mysore KS 《Molecular plant-microbe interactions : MPMI》2007,20(1):41-52
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches. 相似文献
19.
Virus-induced gene silencing (VIGS) is a technology that has rapidly emerged for gene function studies in plants. Many advances have been made in applying this technique in an increasing number of crops. Recently, VIGS has been successfully used to silence genes in tomato fruit through agroinfiltration of fruit attached to the plant. The phytoene desaturase (Pds) gene has been widely used as a reporter gene in VIGS experiments, although little is known about the changes that occur due to its silencing in plants. In this paper, we describe the efficient silencing of the Pds gene through the VIGS approach in detached tomato fruits, which makes the VIGS procedure even more versatile and applicable. After 16 days of agroinfiltration, approximately 75% of the tomatoes showed Pds silencing symptoms, although the distribution of silenced areas was variable among fruits. To study the potential effects caused by Pds silencing in detached tomatoes, carotenoids and other semi-polar secondary metabolites were analyzed using Liquid Chromatography-Mass Spectrometry. In addition, potential differences in primary metabolites were analyzed using Gas Chromatography-Mass Spectrometry. The results indicated that the yellow phenotype observed in Pds-silenced fruit was mainly due to the lack of the red-colored lycopene and therefore to a more pronounced contribution of the yellow-orange carotenoids (lutein, violaxanthin, and zeaxanthin) to the final color of the fruits. Furthermore, the biochemical changes observed in Pds-silenced detached tomatoes suggested that carotenoid and other pathways, e.g. leading to alkaloids and flavonoids, might be affected by the silencing of this reporter gene, and this should be taken into consideration for future experimental designs. 相似文献
20.
The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall. 相似文献