首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raspberry ketone accounts for the characteristic aroma of the raspberry fruit. A bifunctional enzyme with both chalcone synthase (CHS) and benzalacetone synthase (BAS) activity is thought to play a crucial role in the synthesis of p-hydroxybenzalacetone, yet the in vitro enzymatic properties and reaction products of the CHS/BAS recombinant enzyme from raspberry have not been characterized. In this work, a type III polyketide synthase (PKS) gene (RinPKS1) and its corresponding cDNA were isolated from raspberry. Sequence and phylogenetic analyses demonstrated that RinPKS1 is a CHS. However, functional and enzymatic analyses showed that recombinant RinPKS1 is a bifunctional enzyme with both CHS and BAS activity. RinPKS1 showed some interesting characteristics: (1) no traces of bis-noryangonin and 4-coumaroyltriacetic acid lactone could be detected in the enzyme reaction mixture at different pH values; and (2) recombinant RinPKS1 overexpressed in Escherichia coli effectively yielded p-hydroxybenzalacetone as a dominant product at high pH; however, it effectively yielded naringenin as a dominant product at low pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. RinPKS1 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrates.  相似文献   

2.
Two novel type III polyketide synthases, quinolone synthase (QNS) and acridone synthase (ACS), were cloned from Citrus microcarpa (Rutaceae). The deduced amino acid sequence of C. microcarpa QNS is unique, and it shared only 56–60% identities with C. microcarpa ACS, Medicago sativa chalcone synthase (CHS), and the previously reported Aegle marmelos QNS. In contrast to the quinolone- and acridone-producing A. marmelos QNS, C. microcarpa QNS produces 4-hydroxy-N-methylquinolone as the “single product” by the one-step condensation of N-methylanthraniloyl-CoA and malonyl-CoA. However, C. microcarpa ACS shows broad substrate specificities and produces not only acridone and quinolone but also chalcone, benzophenone, and phloroglucinol from 4-coumaroyl-CoA, benzoyl-CoA, and hexanoyl-CoA, respectively. Furthermore, the x-ray crystal structures of C. microcarpa QNS and ACS, solved at 2.47- and 2.35-Å resolutions, respectively, revealed wide active site entrances in both enzymes. The wide active site entrances thus provide sufficient space to facilitate the binding of the bulky N-methylanthraniloyl-CoA within the catalytic centers. However, the active site cavity volume of C. microcarpa ACS (760 Å3) is almost as large as that of M. sativa CHS (750 Å3), and ACS produces acridone by employing an active site cavity and catalytic machinery similar to those of CHS. In contrast, the cavity of C. microcarpa QNS (290 Å3) is significantly smaller, which makes this enzyme produce the diketide quinolone. These results as well as mutagenesis analyses provided the first structural bases for the anthranilate-derived production of the quinolone and acridone alkaloid by type III polyketide synthases.  相似文献   

3.
4.
In vitro plant regeneration was established in Echinacea pallida, a plant that is commonly used as a folk medicine to treat the common cold, fevers, inflammation and so on. Conditions for callus induction, lateral root and shoot regeneration were determined. Subsequently, two vectors pCHS and pOSAG78, carrying different selection marker genes resistant to kanamycin and hygromycin, respectively, were independently used to transform leaf explants of E. pallida using an Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of the transgene and selection marker gene in obtained transgenic lines. Southern hybridization indicated that the T-DNA insertion in some transgenic E. pallida was single copy. Among them, transformants carrying Petunia chalcone synthase (CHS) were selected for further study. CHS is a key enzyme in the biosynthesis of diverse flavonoids including anthocyanin pigmentation. Here, we analyzed the roles and compared the gene expression of two clusters of CHSs, EpaCHS-A and EpaCHS-B (EpaCHS-B1 and EpaCHS-B2), isolated from E. pallida. Two of the genes, EpaCHS-A and EpaCHS-B1, were abundantly expressed in petals, whereas EpaCHS-B2 was expressed at high levels in leaves. The expression of EpaCHSs remained constant in leaves and roots of Petunia CHS transformants, while EpaCHS-B2 expression was changed in flowers of transgenic plants. The biosynthesis of caffeic acid derivatives, cichoric acid and caftaric acid, was increased in leaves and roots of CHS transformants, respectively, while the amount of echinacoside in roots of transgenic plants was decreased. This is the first report on genetic engineering of E. pallida. The information contained herein can be used as a tool for further study of the biological pathways and secondary metabolism of specific compounds from medicinal Echinacea species.  相似文献   

5.
Enzymes of the chalcone synthase (CHS) family catalyze the generation of multiple secondary metabolites in fungi, plants, and bacteria. These metabolites have played key roles in antimicrobial activity, UV protection, flower pigmentation, and pollen fertility during the evolutionary process of land plants. We performed a genome-wide investigation about CHS genes in rice (Oryza sativa). The phylogenetic relationships, gene structures, chromosomal locations, and functional predictions of the family members were examined. Twenty-seven CHS family genes (OsCHS0127) were identified in the rice genome and were found to cluster into six classes according to their phylogenetic relationships. The 27 OsCHS genes were unevenly distributed on six chromosomes, and 17 genes were found in the genome duplication zones with two segmental duplication and five tandem duplication events that may have played key roles in the expansion of the rice CHS gene family. In addition, the OsCHS genes exhibited diverse expression patterns under salicylic acid treatment. Our results revealed that the OsCHS genes exhibit both diversity and conservation in many aspects, which will contribute to further studies of the function of the rice CHS gene family and provide a reference for investigating this family in other plants.  相似文献   

6.
Phalaenopsis species are among the most popular potted flowers for their fascinating flowers. When their whole-genome sequencing was completed, they have become useful for studying the molecular mechanism of anthocyanin biosynthesis. Here, we identified 49 candidate anthocyanin synthetic genes in the Phalaenopsis genome. Our results showed that duplication events might contribute to the expansion of some gene families, such as the genes encoding chalcone synthase (PeCHS), flavonoid 3′-hydroxylase (PeF3′H), and myeloblastosis (PeMYB). To elucidate their functions in anthocyanin biosynthesis, we conducted a global expression analysis. We found that anthocyanin synthesis occurred during the very early flower development stage and that the flavanone 3-hydroxylase (F3H), F3′H, and dihydroflavonol 4-reductase (DFR) genes played key roles in this process. Over-expression of Phalaenopsis flavonoid 3′,5′-hydroxylase (F3′5′H) in petunia showed that it had no function in anthocyanin production. Furthermore, global analysis of sequences and expression patterns show that the regulatory genes are relatively conserved and might be important in regulating anthocyanin synthesis through different combined expression patterns. To determine the functions of MYB2, 11, and 12, we over-expressed them in petunia and performed yeast two-hybrid analysis with anthocyanin (AN)1 and AN11. The MYB2 protein had strong activity in regulating anthocyanin biosynthesis and induced significant pigment accumulation in transgenic plant petals, whereas MYB11 and MYB12 had lower activities. Our work provided important improvement in the understanding of anthocyanin biosynthesis and established a foundation for floral colour breeding in Phalaenopsis through genetic engineering.  相似文献   

7.
Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids. While acridone alkaloids are confined almost exclusively to the Rutaceae, flavonoids occur abundantly in all seed-bearing plants. ACSs and CHSs had been cloned from Ruta graveolens and shown to be closely related polyketide synthases which use N-methylanthraniloyl-CoA and 4-coumaroyl-CoA, respectively, as the starter substrate to produce the acridone or naringenin chalcone. As proposed for the related 2-pyrone synthase from Gerbera, the differential substrate specificities of ACS and CHS might be attributed to the relative volume of the active site cavities. The primary sequences as well as the immunological cross reactivities and molecular modeling studies suggested an almost identical spatial structure for ACS and CHS. Based on the Ruta ACS2 model the residues Ser132, Ala133 and Val265 were assumed to play a critical role in substrate specificity. Exchange of a single amino acid (Val265Phe) reduced the catalytic activity by about 75% but grossly shifted the specificity towards CHS activity, and site-directed mutagenesis replacing all three residues by the corresponding amino acids present in CHS (Ser132Thr, Ala133Ser and Val265Phe) fully transformed the enzyme to a functional CHS with comparatively marginal ACS activity. The results suggested that ACS divergently has evolved from CHS by very few amino acid exchanges, and it remains to be established why this route of functional diversity has developed in the Rutaceae only.  相似文献   

8.

Main conclusion

This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3′ hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3′H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.
  相似文献   

9.
10.
Geraniol synthase (GES) catalyzes the conversion of geranyl diphosphate (GPP) into geraniol, an acyclic monoterpene alcohol that has been widely used in many industries. Here we report the functional characterization of CaGES from Camptotheca acuminata, a camptothecin-producing plant, and its application in production of geraniol in Escherichia coli. The full-length cDNA of CaGES was obtained from overlap extension PCR amplification. The intact and N-terminus-truncated CaGESs were overexpressed in E. coli and purified to homogeneity. Recombinant CaGES showed the conversion activity from GPP to geraniol. To produce geraniol in E. coli using tCaGES, the biosynthetic precursor GPP should be supplied and transferred to the catalytic pocket of tCaGES. Thus, ispA(S80F), a mutant of farnesyl diphosphate (FPP) synthase, was prepared to produce GPP via the head-to-tail condensation of isoprenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A slight increase of geraniol production was observed in the fermentation broth of the recombinant E. coli harboring tCaGES and ispA(S80F). To enhance the supply of IPP and DMAPP, the encoding genes involved in the whole mevalonic acid biosynthetic pathway were introduced to the E. coli harboring tCaGES and the ispA(S80F) and a significant increase of geraniol yield was observed. The geraniol production was enhanced to 5.85 ± 0.46 mg L?1 when another copy of ispA(S80F) was introduced to the above recombinant strain. The following optimization of medium composition, fermentation time, and addition of metal ions led to the geraniol production of 48.5 ± 0.9 mg L?1. The present study will be helpful to uncover the biosynthetic enigma of camptothecin and tCaGES will be an alternative to selectively produce geraniol in E. coli with other metabolic engineering approaches.  相似文献   

11.
The results of evaluating the effects of essential oils on the behavior and reproduction potential of the western flower thrips Frankliniella occidentalis Perg. are presented. Essential oils of Acorus calamus, Juniperus virginiana, and Melissa officinalis possessed a repellent effect on the larvae. A sample from Lutsea cubeba was characterized by an attractive property. Oil solutions of J. virginiana, Mentha spicata, Nepeta cataria, and Litsea cubeba repelled the thrips females off the leaves of the host plant. Reduced concentrations of oils from J. virginiana, M. officinalis, and M. spicata did not affect the distribution of thrips females between the experimental and control leaves, but the number of offspring was significantly lower on the treated leaves.  相似文献   

12.
The wide distribution of Valeriana officinalis as a herbal remedy as well as the considerably higher concentration of putative mutagenic valepotriate metabolites in other drug-delivering valerian species like Valeriana procera Kunth and Valeriana jatamansi Jones ex Roxb. illustrate the necessity of secure authentication of roots of Valeriana officinalis s.l., especially as the morphologically similar roots of the acutely toxic Veratrum album can be mistaken for those of Valeriana officinalis. We developed two DNA-based systems, a multiplex amplification refractory mutation system (MARMS), and a high-resolution melting curve analysis (HRMA) assay, both based on a sequence mutation within the atpB-rbcL region. With both methods, identification of Valeriana officinalis s.l. was possible. With the HRMA, the characteristic melting curve of 33 samples of Valeriana officinalis s.l. and of two commercial samples of Valerianae radix was distinct from the melting curves of all other Valeriana species (60 accessions), and from the closely related genera Centranthus and Valerianella. Since adulteration of Valeriana with toxic Veratrum species was reported previously, Veratrum primers were included in a multiplex PCR-HRM analysis. This system allowed the detection of a Veratrum admixture down to the level of 0.01 %. Although the advantages, in terms of sensitivity, specificity and practicality of the HRM for analysis of degraded plant material were superior to the MARMS assay, both methods are suitable for routine analysis. The results demonstrated the general ability of HRMA to detect specific (toxic) adulterations in drugs in a semiquantitative way.  相似文献   

13.
Salinity is a major problem of many agricultural lands that is usually associated with drought stress in arid and semi-arid regions. In this study we examine the role of salinity stress on temperature requirements of two herbaceous species and how it could be modeled to quantify alterations. We applied four non-linear regression models (segmented, beta, beta modified, and dent-like) to describe the germination rate–temperature relationships of Silybum marinum L. and Calendua officinalis L. over six constant temperatures exposed to different levels of salinity stress. Our results revealed that salinity could affect the cardinal temperatures in both plants and, as a result, it is not possible to suggest one model for all levels of salinity stress. The best model to fit data to predict cardinal temperatures of Silybum marianum and Calendula officinalis at the no-salinity condition were dent-like (AICc?=?4.03) and beta (AICc = ??2.30), respectively. Knowing the thermal time constant (fo) value helps us predict the minimum number of hours required for completion of germination at the optimal temperature. All models in this study were estimated higher fo due to higher salinity stress in both Silybum marianum and Calendula officinalis seeds. The highest estimated fo for Silybum marianum (91.5?±?59.6) and Calendula officinalis (178.9?±?26.5) was obtained from the results of germination rate prediction using a dent-like model at 200 mM salinity.  相似文献   

14.
In our recent work (Ma et al., in Planta 229(3):457–469, 2009a and 229(4):1077–1086, 2009b), two three-intron type III PKS genes, PcPKS1 and PcPKS2, were isolated from Polygonum cuspidatum Sieb. et Zucc. Phylogenetic and functional analyses revealed PcPKS1 is a three-intron chalcone synthase (CHS) gene, and PcPKS2 is found to be a three-intron benzalacetone synthase (BAS) gene. The regular CHS encoded by a single intron gene have not been isolated and characterized from P. cuspidatum. In this work a further CHS with one intron (PcPKS3) and a stilbene synthase (STS) gene with three-intron (PcPKS5) were isolated and characterized by functional and phylogenetic analyses. In comparison with PcPKS1, a bifunctional enzyme with both CHS and BAS activity, the enzymatic product of recombinant PcPKS3 was naringenin, bis-noryangonin (BNY) and 4-coumaroyltriacetic acid lactone (CTAL) occurred as side products. The PcPKS5 synthesized resveratrol and a trace amount of naringenin from p-coumaroyl-CoA. To our knowledge, PcPKS5 is the first reported three-intron STS gene in flowering plants. In this work, we speculated that this involved a possible evolutionary route of plant-specific type III PKS superfamily in P. cuspidatum.  相似文献   

15.
Microbial cells have extensively been utilized to produce value-added bioactive compounds. Based on advancement in protein engineering, DNA recombinant technology, genome engineering, and metabolic remodeling, the microbes can be re-engineered to produce industrially and medicinally important platform chemicals. The emergence of co-culture system which reduces the metabolic burden and allows parallel optimization of the engineered pathway in a modular fashion restricting the formation of undesired byproducts has become an alternative way to synthesize and produce bioactive compounds. In this study, we present genetically engineered E. coli-based co-culture system to the de novo synthesis of apigetrin (APG), an apigenin-7-O-β-d-glucopyranoside of apigenin. The culture system consists of an upstream module including 4-coumarate: CoA ligase (4CL), chalcone synthase, chalcone flavanone isomerase (CHS, CHI), and flavone synthase I (FNSI) to synthesize apigenin (API) from p-coumaric acid (PCA). Whereas, the downstream system contains a metabolizing module to enhance the production of UDP-glucose and expression of glycosyltransferase (PaGT3) to convert API into APG. To accomplish this improvement in titer, the initial inoculum ratio of strains for making the co-culture system, temperature, and media component was optimized. Following large-scale production, a yield of 38.5 µM (16.6 mg/L) of APG was achieved. In overall, this study provided an efficient tool to synthesize bioactive compounds in microbial cells.  相似文献   

16.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 μmol(CO2) m?2s?1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 μmol(CO2) m?2s?1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 μmol(CO2) m?2s?1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.  相似文献   

17.
Ecosystem services provided by agricultural ecosystems include natural pest control and pollination, and these are important to ensure crop productivity. This study investigates the use of the banker plant Calendula officinalis L. to provide multiple ecosystem services by increasing the abundance of natural enemies for biological control of tomato pests, providing forage resources to wild bees, and improving crop yield. C. officinalis was selected for this experiment as it is used as a banker plant for Dicyphini (Hemiptera: Miridae) predators. Strips of flowering C. officinalis were established in the field edges of tomato fields and arthropod visitation to C. officinalis strips and tomato was measured. Crop damage from multiple pests of tomato was assessed in fields with C. officinalis strips and control sites. The contribution of pollination to crop yield was assessed through a pollinator exclusion experiment. The inclusion of C. officinalis in tomato fields was associated with increased abundance of Dicyphini, parasitoids, bees and other arthropod groups within these strips. A reduction in the total leaf crop damage from Lepidoptera pests was recorded in fields with C. officinalis strips. Increased fruit set and biomass were recorded in open-pollinated tomato but this was not significantly different between control and C. officinalis fields. Results presented here demonstrate that the inclusion of a companion plant can improve the conservation of beneficial arthropods and the delivery of agroecosystem services but efficacy is likely to be improved with the addition of plants, with different functional traits, and with improved attractiveness to crop pollinators.  相似文献   

18.
Ficus (Moraceae) is a keystone group in tropical and subtropical forests with remarkable diversity of species and taxonomical challenges as a consequence of fig–pollinator coevolution. Ficus subsect. Frutescentiae includes about 30 species that are predominantly shrubs or small trees with Terminalia branching. Many of these species are difficult to delimit morphologically, and the group includes a tangle of uncertain taxa and incorrectly applied names. We conducted a phylogenetic analysis with internal and external transcribed spacer data (ITS and ETS) and data from 18 polymorphic microsatellite loci to evaluate the species status of the most perplexing members of this subsection. The results confirm the monophyly of subsect. Frutescentiae, with F. pedunculosa as sister to the rest. The F. erecta complex comprises approximately 17 taxa: F. erecta, F. abelii, F. boninsimae, F. nishimurae, F. iidaiana, F. gasparriniana var. laceratifolia, F. gasparriniana var. viridescens, F. pyriformis, F. stenophylla, F. fusuiensis, F. fengkaiensis, F. sinociliata, F. tannoensis, F. vaccinioides, F. formosana, F. pandurata, and F. periptera. The last five of these were supported as good species, while the others were not well supported by the present evidence. Evidence also supported the status of the non-F. erecta complex species including. F. pedunculosa, F. ischnopoda, F. heteromorpha, and F. variolosa. Ficus filicauda and F. neriifolia are possibly conspecific. The species status of F. potingensis should be restored and it should be treated as a member of section Eriosycea. Identification of the remaining taxa (F. gasparriniana var. esquirolii, F. ruyuanensis, F. daimingshanensis, F. chapaensis, F. changii, F. trivia, and F. tuphapensis) and their relationships to the F. erecta complex were not clarified. As a whole, only ten species in this subsection are confirmed, one is excluded, one is synonymous, and the others are either unresolved or short of samples. There appears to be a consistent genetic background among these unresolved groups, which suggests that repeated hybridization (as a result of pollinator host shifts) has filled up the interspecific gaps during the fig–pollinator coevolution process.  相似文献   

19.
We describe here the morphological and functional alterations of the retina of mutant zebrafish, night blindness c (nbc). The nbc mutant was isolated from the F1 generation of N-ethyl-N-nitrosourea mutagenized founders. Visual sensitivity of wildtype and heterozygous (nbc+/?) mutant fish was determined using a behavioral assay based on visually mediated escape responses. Histology, immunocytochemistry, and electroretinography were used to study structural and functional changes of the outer retina. The behavioral visual response of nbc+/? mutants started to deteriorate at 12 months of age. Considerable variations existed between the extents of retinal degeneration of individual fish. In the most severe cases, both rod and cone outer segments were degenerated. In moderate cases, only rod outer segments were affected. Yet in other cases, no degeneration was detected. The retina of homozygous (nbc?/?) larvae had a normal appearance. However, they develop abnormally and died before 9 days post fertilization. In conclusion, nbc causes late-onset and progressive dominant retinal degeneration of both rod and cone photoreceptor cells. However, nbc is not a retina-specific gene, as the homozygous fish displayed extra-retinal defects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号