首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.  相似文献   

2.

Key message

We present novel observations of high-specificity SpCas9 variants, sgRNA expression strategies based on mutant sgRNA scaffold and tRNA processing system, and CRISPR/Cas9-mediated T-DNA integrations.

Abstract

Specificity of CRISPR/Cas9 tools has been a major concern along with the reports of their successful applications. We report unexpected observations of high frequency off-target mutagenesis induced by CRISPR/Cas9 in T1 Arabidopsis mutants although the sgRNA was predicted to have a high specificity score. We also present evidence that the off-target effects were further exacerbated in the T2 progeny. To prevent the off-target effects, we tested and optimized two strategies in Arabidopsis, including introduction of a mCherry cassette for a simple and reliable isolation of Cas9-free mutants and the use of highly specific mutant SpCas9 variants. Optimization of the mCherry vectors and subsequent validation found that fusion of tRNA with the mutant rather than the original sgRNA scaffold significantly improves editing efficiency. We then examined the editing efficiency of eight high-specificity SpCas9 variants in combination with the improved tRNA-sgRNA fusion strategy. Our results suggest that highly specific SpCas9 variants require a higher level of expression than their wild-type counterpart to maintain high editing efficiency. Additionally, we demonstrate that T-DNA can be inserted into the cleavage sites of CRISPR/Cas9 targets with high frequency. Altogether, our results suggest that in plants, continuous attention should be paid to off-target effects induced by CRISPR/Cas9 in current and subsequent generations, and that the tools optimized in this report will be useful in improving genome editing efficiency and specificity in plants and other organisms.
  相似文献   

3.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been reported for precise genome modification in many plants. In the current study, we demonstrate a successful mutation in phytoene desaturase (RAS-PDS) of banana cv. Rasthali using the CRISPR/Cas9 system. Two PDS genes were isolated from Rasthali (RAS-PDS1 and RAS-PDS2), and their protein sequence analysis confirmed that both PDS comprises conserved motifs for enzyme activity. Phylogenetic analysis of RAS-PDS1 and RAS-PDS2 revealed a close evolutionary relationship with other monocot species. The tissue-specific expression profile of RAS-PDS1 and RAS-PDS2 in Rasthali suggested differential regulation of the genes. A single 19-bp guide RNA (gRNA) was designed to target the conserved region of these two RAS-PDS and transformed with Cas9 in embryogenic cell suspension (ECS) cultures of cv. Rasthali. Complete albino and variegated phenotype were observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the indels with 59% mutation frequency in RAS-PDS, suggesting activation of the non-homologous end-joining (NHEJ) pathway. The majority of mutations were either insertion (1–5) or deletion (1–4) of nucleotides near to protospacer adjacent motif (PAM). These mutations have created stop codons in RAS-PDS sequences which suggest premature termination of RAS-PDS protein synthesis. The decreased chlorophyll and total carotenoid contents were detected in mutant lines that revealed the functional disruption of both RAS-PDS genes. Our results demonstrate that genome editing through CRISPR/Cas9 can be applied as an efficient tool for banana genome modification.  相似文献   

4.
5.
6.
7.
The Foxn1 gene is known as a critical factor for the differentiation of thymic and skin epithelial cells. This study was designed to examine the phenotype of Foxn1-modified rats generated by the CRISPR/Cas9 system. Guide-RNA designed for first exon of the Foxn1 and mRNA of Cas9 were co-injected into the pronucleus of Crlj:WI zygotes. Transfer of 158 injected zygotes resulted in the birth of 50 offspring (32 %), and PCR identified five (10 %) as Foxn1-edited. Genomic sequencing revealed the deletion of 44 or 60 bp from and/or insertion of 4 bp into the Foxn1 gene in a single allele. The number of T-cells in the peripheral blood lymphocytes of mutant rats decreased markedly. While homozygous deleted mutant rats had no thymus, the mutant rats were not completely hairless and showed normal performance in delivery and nursing. Splicing variants of the indel-mutation in the Foxn1 gene may cause hypomorphic allele, resulting in the phenotype of thymus deficiency and incomplete hairless. In conclusion, the mutant rats in Foxn1 gene edited by the CRISPR/Cas9 system showed the phenotype of thymus deficiency and incomplete hairless which was characterized by splicing variants.  相似文献   

8.
Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.  相似文献   

9.
10.
11.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

12.

Background  

Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis.  相似文献   

13.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

14.
15.
16.
The diplogastrid nematode Pristionchus pacificus is a nematode model system for comparative studies to Caenorhabditis elegans and integrative evolutionary biology aiming for interdisciplinary approaches of evo-devo, population genetics, and ecology. For this, fieldwork can be combined with laboratory studies, and P. pacificus has a well-developed methodological toolkit of forward genetics, whole genome sequencing, DNA-mediated transformation, and various –omics platforms. Here, we establish CRISPR/Cas9-based gene inactivation and describe various boundary conditions of this methodology for P. pacificus. Specifically, we demonstrate that most mutations arise within the first 9 hours after injections. We systematically tested the efficiency of sgRNAs targeting different exons in Ppa-dpy-1 and characterized the molecular nature of the induced mutations. Finally, we provide a protocol that might also be useful for researchers working with other non-Caenorhabditis nematodes.  相似文献   

17.
18.
19.
Diabetes mellitus is a chronic disease with accompanying severe complications. Various animal models, mostly rodents due to availability of genetically modified lines, have been used to investigate the pathophysiology of diabetes. Using pigs for diabetic research can be beneficial because of their similarity in size, pathogenesis pathway, physiology, and metabolism with human. However, the use of pigs for diabetes research has been hampered due to only few pig models presenting diabetes symptoms. In this study, we have successfully generated insulin-deficient pigs by generating the indels of the porcine INS gene in somatic cells using CRISPR/Cas9 system followed by somatic cell nuclear transfer. First, somatic cells carrying a modified INS gene were generated using CRISPR/Cas9 system and their genotypes were confirmed by T7E1 assay; targeting efficiency was 40.4% (21/52). After embryo transfer, three live and five stillborn piglets were born. As expected, INS knockout piglets presented high blood glucose levels and glucose was detected in the urine. The level of insulin and c-peptide in the blood serum of INS knockout piglets were constant after feeding and the expression of insulin in the pancreas was absent in those piglets. This study demonstrates effectiveness of CRISPR/Cas9 system in generating novel pig models. We expect that these insulin-deficient pigs can be used in diabetes research to test the efficacy and safety of new drugs and the recipient of islet transplantation to investigate optimal transplantation strategies.  相似文献   

20.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号