首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we assessed changes in the osmoregulatory system of juvenile sub-Antarctic Eleginops maclovinus submitted to different environmental salinities (5, 15, 32 and 45 psu) using two different acclimation trials: (1) an end-point experiment (exposure for 14 days) and (2) a time course experiment (specimens were sampled on days 1, 3, 7 and 14 post-transfer). Plasma osmolality, cortisol and metabolites (glucose, lactate and protein) values as well as Na+, K+-ATPase (NKA) activity were assessed in several osmoregulatory tissues (gills, kidney and intestine). In both trials, acclimation to different environmental salinities for 14 days induced changes in plasma metabolites (glucose, lactate and proteins) as well as cortisol values related to salinity challenges. Plasma osmolality and gill NKA activity presented a direct and positive relationship with respect to environmental salinity, while kidney NKA activity showed a “U-shaped” relationship. Anterior intestinal NKA activity increased in response to environmental salinity and apparently did not change in the middle portion of this organ, while it was enhanced in the posterior portion in environmental salinities different than seawater. Plasma metabolite values increased under hypo- and hypersaline conditions, indicating the importance of these energy substrates in extreme environments. The time course study revealed that specimens of E. maclovinus are able to accommodate their osmotic and metabolic system to respond to osmoregulatory challenges by allostatic changes.  相似文献   

2.
The influence of acclimation to different environmental salinities (low salinity water, LSW; seawater, SW; and hyper saline water, HSW) and feeding conditions (fed and food deprived) for 14 days was assessed on osmoregulation and energy metabolism of several tissues of gilthead sea bream Sparus auratus. Fish were randomly assigned to one of six treatments: fed fish in LSW, SW, and HSW, and food-deprived fish in LSW, SW, and HSW. After 14 days, plasma, liver, gills, kidney and brain were taken for the assessment of plasma osmolality, plasma cortisol, metabolites and the activity of several enzymes involved in energy metabolism. Food deprivation abolished or attenuated the increase in gill Na+,K+-ATPase activity observed in LSW- and HSW-acclimated fish, respectively. In addition, a linear relationship between renal Na+,K+-ATPase activity and environmental salinity was observed after food deprivation, but values decreased with respect to fed fish. Food-deprived fish acclimated to extreme salinities increased production of glucose through hepatic gluconeogenesis, and the glucose produced was apparently exported to other tissues and served to sustain plasma glucose levels. Salinity acclimation to extreme salinities enhanced activity of osmoregulatory organs, which is probably sustained by higher glucose use in fed fish but by increased use of other fuels, such as lactate and amino acids in food-deprived fish.  相似文献   

3.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

4.
The correlation between the energy and carbohydrate metabolism rate with the length and weight of salmon (Salmo salar L.) and whitefish (Coregonus lavaretus L., Coregonus albula L.) studied in nature and farmed rainbow trout (Parasalmo mykiss Walb.) has been investigated. The results of the study show that the largest and fastest growing fish had high activity of enzymes involved in aerobic energy metabolism (cytochrome c oxidase and malate dehydrogenase) and anaerobic metabolism (lactate dehydrogenase in muscles and 1-glycerophosphate dehydrogenase and glucose-6-phosphate dehydrogenase in liver). Age-related changes of the investigated parameters are caused by a general reduction of the aerobic metabolism rate and oxygen consumption during ontogenesis, increased lipid metabolism, and the amount of stored substances. It is also shown that pubescent male and female whitefish (4+ and 5+) have differences in the correlation between enzyme activity of cytochrome c oxidase, 1-glycerophosphate and glucose-6-phosphate dehydrogenases and the length and weight of individuals.  相似文献   

5.
As one of the main species causing “green tides”, Ulva prolifera always inhabits in estuarine areas with changes in salinity and nutrients. Reduced salinity may affect directly or indirectly the processes of uptake and assimilation of nitrate, in which the nitrate reductase (NR) activity play the crucial roles. In this experiment, we investigated the different effects of enriched nitrogen and phosphate on NR activity of Ulva prolifera at salinity 30, 15, and 5 psu. The results showed that when salinity being lowered NR activity decreased under no enrichment (CT) or PO4 3? enrichment condition. NO3 ? or combination with PO4 3? could significantly enhance NR activity at three salinities, among which the highest value occurred at 15 psu. Enrichment of NH4 + significantly decreased NR activity at 30 and 15 psu, but not at 5 psu. The results suggested NR of Ulva prolifera could be triggered by NO3 ?, especially at middle salinity, and keep low when exposed under hyposaline or NH4 + enrichment for long term to rapidly respond to pulse of NO3 ? in estuarine areas.  相似文献   

6.
Natural saline lakes in Western Australia were sampled for microalgae species and strains with potential for large-scale outdoor cultivation over a wide range of salinities for biofuels production. Using a rational isolation and screening process, several Tetraselmis strains (Chlorophyta, Chlorodendrales) with a broad range of salinity tolerance were identified and were characterised further for their potential for biofuels production. Specific growth rates increased from 0.8 to 1.2 days?1 when the medium salinity was decreased from 11 to 3 % (w/v) NaCl (1.88 to 0.51 M NaCl) in batch cultivation mode, thereby indicating quick adaptation to large salinity changes. In general, ash-free dry weight (AFDW), total lipid, protein and carbohydrate contents per cell were highest in the early stages of growth. Salinity increases led to an increase in cell AFDW, with the highest mean maximum of 2555?±?659 pg AFDW.cell?1 at 11 % (w/v) NaCl in the strains Tetraselmis MUR 167 and MUR 219 which had been in culture for many years, as compared to the mean maximum of 981?±?141 pg AFDW.cell?1 the in newly isolated strains MUR 230, 231, 232 and 233. Similar observations on total lipid, protein and carbohydrate content per cell were made between the two groups of strains. Overall, all strains yielded high biomass and total lipid productivities over a very wide range of salinities without large variation in their gross biochemical composition and growth pattern. Based on AFDW and total lipid productivity data, the order of preference for selecting strains for further investigation for large-scale culture was MUR 231?>?MUR 233?>?MUR 219?>?MUR 230?>?MUR 232?>?MUR 167. The Tetraselmis spp. were also very competitive as shown by the outdoor cultivation of diatom, Halamphora coffeaeformis MUR 158, in parallel with Tetraselmis sp. MUR 167 which resulted in the diatom being outcompeted by the green alga. Our results demonstrate the high commercial potential of euryhaline Tetraselmis spp. for cultivation over a broad range of salinity in outdoor cultures.  相似文献   

7.
The salinity tolerance of 62 strains of Pfiesteria and Pfiesteria‐like heterotrophic dinoflagellates was measured. All strains were acclimated at 12 psu for at least 1 year before experimentation. Strains isolated from the Chesapeake Bay and Neuse River systems tolerated lower salinities than strains isolated from the Wilmington River system (P< 0.005). Swimming cells were still observed after 5 days at 0.5 psu for one strain, and at 1 psu for most other Chesapeake Bay and Neuse River strains. Swimming cells for the Wilmington River were still observed after 5 days at 3–5 psu, but no swimming cells were observed at ≤ 2 psu. With regard to the upper salinity tolerance, the Wilmington River strains tolerated higher salinities than the Chesapeake Bay and Neuse River systems (P< 0.005). Most Wilmington River strains were swimming after 5 days at salinities ≥ 50 psu, whereas the Chesapeake Bay and Neuse River system strains rarely had swimming cells at salinities exceeding 35–45 psu. For all three water systems and for both lower and higher salinities, cells apparently encysted in many instances. However, when salinities were returned to 12 psu, swimming cells often re‐appeared. Statistically significant geographic differences in salinity tolerance suggest a geographic adaptation has occurred and that salinity tolerance is under genetic control. The results also suggest there is diversity among the strains.  相似文献   

8.
Effects of salinity on seed germination and growth of young (1 month old) and old (2-year old) seedlings of Excoecaria agallocha were investigated. Combined effects of salinity and nutrient level were also examined on old seedlings. Seed germination was best at 0 and 5 psu salinity. 15 psu salinity significantly delayed root initiation and decreased final establishment rate. All seeds failed to establish at 25 psu salinity. Young seedlings performed best at 0 and 5 psu, but growth was stunned at 15 psu, and all seedlings died within 90 days at 25 psu. Old seedlings grew best at salinities below 5 psu and they survived the whole cultivation at 25 psu. This indicated that E. agallocha increased salt tolerance over time. Gas exchange was significantly compromised by salinities above 15 psu but evidently promoted by high nutrient. Proline accumulated considerably at high nutrient, and its contents increased from 0 to 15 psu but decreased at 25 psu salinity. Lipid peroxidation was aggravated by increasing salinity beyond 15 psu but markedly alleviated by nutrient addition. These responses indicated that E. agallocha was intolerant to high salinity but it can be greatly enhanced by nutrient addition.  相似文献   

9.
Microalgae are ideal candidates for bioremediation and biotechnological applications. However, salinity and nutrient resource availability vary seasonally and between cultivation sites, potentially impacting on biomass productivity. The aim of this study was to screen pollutant-tolerant freshwater microalgae (Desmodesmus armatus, Mesotaenium sp., Scenedesmus quadricauda and Tetraedron sp.), isolated from Tarong power station ash-dam water, for their tolerance to cultivation at a range of salinities. To determine if biochemical composition could be manipulated, the effects of 4-day nutrient limitation were also determined. Microalgae were cultured at 2, 8, 11 and 18 ppt salinity, and nutrient uptake was monitored daily. Growth, total lipid, fatty acid (FA), and amino acid contents were quantified in biomass harvested while nutrient-replete and, after 4 days, nutrient-deplete. D. armatus showed the highest salinity tolerance actively growing in up to 18 ppt while Mesotaenium sp. was the least halotolerant with decreasing growth rates from 11 ppt. However, Mesotaenium sp. at 2 and 8 ppt had the highest biomass productivity and nutrient requirements of the four species, making it ideal for nutrient remediation of eutrophic freshwater effluents. Salinity and nutrient status had minimal influence on total lipid and FA contents in D. armatus and Mesotaenium sp., while nutrient depletion induced an increase of total lipid and FAs in S. quadricauda and Tetraedron sp., which was further increased with increasing salinity. As none of the growth conditions affected amino acid profiles of the species, these findings provide a basis for species selection based on site-specific salinity conditions and nutrient resource availability.  相似文献   

10.
11.
12.
Fatty acid composition of cellular membranes can modify permeability and can modulate the activity of Na(+)/K(+)-ATPase. Although highly unsaturated fatty acids (HUFA) improve survival and osmoregulatory capacity to low salinities in penaeid shrimp, the possible mechanisms have not been established. For this purpose the influence of HUFA supplementation in diet (2.9 vs. 34% HUFA proportion to total fatty acids) on osmoregulatory responses of juvenile Litopenaeus vannamei submitted to an acute (15 h) or chronic exposure (21 days), to low (5 g L(-1)) and high salinities (50 g L(-1)) was analyzed. Shrimp fed the high-HUFA diet, had higher concentration of main HUFA (20:5n-3 and 22:6n-3) in polar lipids of gills. Osmotic pressure in hemolymph was significantly affected by salinity in acute (640, 751, 847 mOsm/kg for 5, 30 and 50 g L(-1), respectively), and chronic exposure (645, 713, 814 mOsm/kg), but variations between them were small compared to environmental salinity (206, 832, 1547 mOsm/kg), indicating that osmoregulation was achieved in a matter of hours. An increase in Na(+)/K(+)-ATPase activity was observed only after a chronic exposure to low salinity. Free amino acids (FAA), mainly alanine and arginine, were higher at 30 (control) and 50 g L(-1) in accordance to their role as organic osmolites. Neither osmotic pressure, Na(+)/K(+)-ATPase activity, nor FAA was affected by HUFA supplementation. However, higher water content in gills of shrimp exposed to low salinities was counteracted by increased HUFA content, which could be a result of changes in water permeability of gills. The osmoregulatory capacity of penaeid shrimp to low and high salinities was achieved within 15 h of acclimation and did not depend on HUFA supplementation in the diet.  相似文献   

13.
14.
The gilthead sea bream (Sparus auratus) is an euryhaline fish where prolactin (PRL) and growth hormone (GH) play a role in the adaptation to different environmental salinities. To find out the role of these pituitary hormones in osmoregulation and energy metabolism, fish were implanted with slow release implants of ovine GH (oGH, 5 microg g(-1) body mass) or ovine prolactin (oPRL, 5 microg g(-1) body mass), and sampled 7 days after the start of the treatment. GH increased branchial Na(+),K(+)-ATPase activity and decreased sodium levels in line with its predicted hypoosmoregulatory action. GH had metabolic effects as indicated by lowered plasma protein and lactate levels, while glucose, triglycerides and plasma cortisol levels were not affected. Also, GH changed liver glucose and lipid metabolism, stimulated branchial and renal glucose metabolism and glycolytic activity, and enhanced glycogenolysis in brain. PRL induced hypernatremia. Furthermore, this hormone decreased liver lipid oxidation potential, and increased glucose availability in kidney and brain. Both hormones have opposite osmoregulatory effects and different metabolic effects. These metabolic changes may support a role for both hormones in the control of energy metabolism in fish that could be related to the metabolic changes occurring during osmotic acclimation.  相似文献   

15.
Juvenile gray snapper (Lutjanus griseus) occupy a wide range of estuarine and nearshore habitats that differ in physico-chemical properties. To quantify the energetic cost of inhabiting these different habitats, routine metabolism of individual gray snapper was measured in the laboratory at 20 combinations of temperature (18, 23, 28, and 33 °C) and salinity (5, 15, 25, 35, and 45 psu). An open, flow-through respirometer was used, enabling trials to be run for long periods (∼16 h), while maintaining water quality (dissolved O2>70% saturation), and providing fish sufficient time to habituate to the chambers undisturbed. Video recordings of fish in the respirometer chambers were analyzed to quantify the spontaneous activity rate of individuals. Analysis of covariance, using fish weight and mean activity rate as covariates, indicated significant temperature and salinity effects on oxygen consumption. Oxygen consumption was significantly higher at high salinities, and the salinity effect was temperature dependent. A polynomial equation describing oxygen consumption as a function of temperature and salinity indicated the increase due to salinity from 5 to 45 psu at high temperatures (30-33 °C) was equivalent to a 3 °C increase in temperature. At intermediate temperatures (24-26 °C), the increase due to salinity from 5 to 45 psu was less dramatic, equivalent to a 2 °C increase in temperature. At the lowest temperatures (18 °C), salinity did not have a significant effect on oxygen consumption. The increased metabolic costs in high salinities (∼7% at the high temperature) represent a significant energy cost for juveniles, that would need to be balanced by lower predation risk or greater food availability to result in similar juvenile production compared to lower salinity environments.  相似文献   

16.
This study examines the influence of an extract from the brown alga Saccharina japonica on the antiradical activity and biochemical indices of lipid and carbohydrate metabolism in rat liver during carbon tetrachloride (CTC) poisoning. The Saccharina extract contributed to a reduction of the level of free-radical processes, effective relief of tissue hypoxia, and the restoration of the neutral lipid fractions pattern. The therapeutic effectiveness of the algal preparation appeared to be greater than that of the widely adopted reference hepatoprotector Legalon.  相似文献   

17.
18.
The activity of the key enzymes of the energy and carbohydrate metabolism (cytochrome c oxidase, lactate dehydrogenase, aldolase, and glucose-6-phosphate dehydrogenase) have been studied in the three-spined stickleback Gasterosteus aculeatus spawning in different biotopes of the White Sea (Sel’dyanaya Bay, Sukhaya Salma Strait, and Kolyushkovaya Lagoon). It was found that individuals of stickleback from different spawning grounds differed mainly in the level of anaerobic metabolism and in the degree of utilization of carbohydrates during glycolysis. The results testify to the existence of adaptive mechanisms for the restructuring of the metabolic pathways of the energy metabolism depending on habitat conditions in different biotopes during the spawning period.  相似文献   

19.
20.
Microalgal biomass seems to be one of the potential alternative feedstocks for the production of various types of biofuel. In the present study, first of all, suitable growth media and harvesting time were determined for the freshwater chlorophyte microalga Acutodesmus dimorphus. Cultivation of A. dimorphus in BG-11 medium for 15 days resulted in the highest biomass productivity with 24.60 % lipid and 22.78 % carbohydrate contents. Further, thermotolerance property of A. dimorphus was evaluated by heat stressing the cells at 45 °C and 50 °C up to 24 h and determining the cell mortality and pigment composition along with lipid and carbohydrate contents. Chlorophyll and carotenoid contents of cells significantly increased after heat stress at 45 °C. Increasing the heat stress from 8 to 24 h increased the dead cells by 3–4 % at both temperatures, which shows the thermotolerance of A. dimorphus. Lipid content of 27 % and carbohydrate content of 26–28 % even after 24 h of heat stress at 45 and 50 °C suggest A. dimorphus as a potential feedstock for biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号