首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To evaluate whether the abundance of coyotes Canis latrans was influenced by the availability of anthropogenic foods in a humanized landscape, we compared three neighboring areas (hereafter referred to as NA, CA, and SA) under contrasting human pressures within the Santa Monica Mountains of California, USA. We quantified the use of anthropogenic foods by coyotes and assessed local densities within these three regions. Overall, 761 coyote feces were analyzed; identified food items were categorized into 11 food types (7 native and 4 anthropogenic). Though small mammals (lagomorphs and rodents) were the main prey of coyotes in all areas and seasons, log‐linear modeling of multiway contingency tables indicates that consumption of anthropogenic foods by coyotes varied significantly throughout study areas. Thus, in the most humanized area (CA; 24% of this region is residential habitat), anthropogenic foods (trash, livestock, domestic fruit) comprised seasonally between 14 and 25% of total items in coyote diets, whereas in the least humanized area (NA; 2% residential) anthropogenic foods only comprised seasonally between 0 and 3% of items. Coyote density, estimated by foot‐hold trapping surveys and by genotyping feces, was also highly variable between areas. The heavily human‐impacted CA area had the highest coyote density (2.4–3.0 ind. km?2), whereas coyote density was significantly lower (0.3–0.4 ind. km?2) in the least humanized area (NA). In the third region (SA; 10% residential), with an intermediate level of human pressure, both importance of anthropogenic foods in coyote diet (4–6%) and coyote density (1.6–2.0 ind. km?2) were intermediate compared to the other regions. Our data suggest that subsidization by anthropogenic foods augments coyote densities and alters their diets in the Santa Monica Mountains, California. We include data from literature to show that anthropogenic foods are used by omnivorous mammals throughout the world. Surprisingly, however, the potential effects of allochthonous inputs on such species are not well‐understood. Thus, further research on this phenomenon in humanized landscapes is needed.  相似文献   

2.
During the International Polar Year (IPY), acoustic recorders were deployed on oceanographic moorings in Fram Strait and on the Chukchi Plateau, representing the first coordinated year-round sampling of underwater acoustic habitats at two sites in the High Arctic. Examination of species-specific marine mammal calls recorded from autumn 2008–2009 revealed distinctly different acoustic habitats at each site. Overall, the Fram Strait site was acoustically complex compared with the Chukchi Plateau site. In Fram Strait, calls from bowhead whales (Balaena mysticetus) and a variety of toothed whales (odontocetes) were recorded year-round, as were airgun pulses from seismic surveys. In addition, calls from blue whales (Balaenoptera musculus) and fin whales (B. physalus) were recorded from June to October and August to March, respectively. Conversely, at the Chukchi Plateau site, beluga (Delphinapterus leucas) and bowhead whale calls were recorded primarily from May to August, with airgun signals detected only in September–October. Ribbon seal (Phoca fasciata) calls were detected in October–November, with no marine mammals calls at all recorded from December to February. Of note, ice-adapted bearded seals (Erignathus barbatus) were recorded at both sites, primarily in spring and summer, corresponding with the mating season for that species. Differences in acoustic habitats between the two sites were related to contrasts in sea ice cover, temperature, patterns of ocean circulation and contributions from anthropogenic noise sources. These data provide a provisional baseline for the comparison of underwater acoustic habitats between Pacific and Atlantic sectors of the High Arctic.  相似文献   

3.
Understanding the influence of environmental conditions and people on ungulate density and distribution is of key importance for conservation. We evaluated the effects of ecological and anthropogenic factors on the density of migratory wildebeest and zebra and resident oribi in Zambia's Liuwa Plain National Park where human settlements were present. We conducted transect surveys from 2010 to 2013 using distance sampling methods and then developed a set of 38 candidate models to describe results and predict density. Models included the effects of variables in three classes: environmental (year, season, vegetation, predominant grass height, burn, water presence), predation risk (hyaena density) and anthropogenic (distance to park boundary and settlements). Densities ranged from 6.2 to 60.8 individuals km?2 for wildebeest, 1.1 to 14.5 individuals km?2 for oribi and 1.8 to 8.1 individuals km?2 for zebra. The most complex models were strongly supported for all three species. The magnitude and sign of variable effects differed among species, indicating that local densities of wildebeest, oribi and zebra are affected by a complex set of anthropogenic and ecological factors. Results reveal resource partitioning among ungulate species and indicate that predation risk and proximity to humans affect ungulate distributions with implications for managing migrations in the Greater Liuwa Ecosystem.  相似文献   

4.
The primary production in the Greenland Sea, Fram Strait, Barents Sea, Kara Sea and adjacent Polar Ocean was investigated through the physically–biologically coupled, nested 3D SINMOD model with 4 km grid size for the years 1995–2007. The model had atmospheric forcing from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Three basic gross primary production (GPP) domains were distinguished: (i) an extensive domain dominated by Atlantic Water, (ii) an elongated domain roughly corresponding to the seasonal ice zone (SIZ) and (iii) a compact perennial ice zone (>100, between 100 and 30 and <30 g C m?2 year?1, respectively). The interannual coefficient of variation for GPP in domain (i) was <0.1, and increased northwards towards >0.6 in the northwesternmost and northeasternmost fringe of the SIZ. The primary production in the northern sector of the European Arctic Corridor (EAC) region prior to 2007 was characterised by limited interannual variability, on average 75.2 ± 10% and 24.0 ± 16% g C m?2 year?1 for the EAC region at 74–80 and >80°N, respectively. The main primary production anomalies were found early in the productive season and in sections of the SIZ, generally in regions with low GPP. There was no significant trend of increasing GPP in the 1995–2007 time interval.  相似文献   

5.
Total biomass of fish in the Russian elittoral zone of the Sea of Japan during the warm period, according to surveys performed from 1983 to 2006, was 475.6 thousand tons, or 8.8 t/km2. Relatively high values of specific biomass were recorded in the 1980s, and the maximum value (29.2 t/km2) was recorded in 1986, reflecting the cooccurrence of dramatic surges in the Alaska pollock (Theragra chalcogramma) and the Pacific herring (Clupea pallasii). In the 1990s, the total biomass of fishes decreased by an order of magnitude, and over almost the entire decade remained approximately at the same level (4.5–6.7 t/km2); after 2001, this parameter never reached higher values than 4.4 t/km2. The average annual density of fish biomass varied in different areas from 5.8 t/km2 (northern Strait of Tartary) to 13.3 t/km2 (southern Primorskii krai). The principal factor determining the value of specific fish biomass in particular areas is the level of the Alaska pollock’s resources. In the elittoral, the highest concentration of the absolute majority of dominant and subdominant species are confined to the range of depths from 50 to 100 m.  相似文献   

6.
1. Terrestrial plant litter entering two forest and two pasture sites on upland streams in south-eastern Australia was measured over a 2-year period using traps suspended above the streams. Laterally transported terrestrial plant litter was also determined in one stream, but found to be only 10% of the total. 2. Litter accession to traps suspended above the stream was significantly lower at both forested sites than was litter fall in the adjacent riparian vegetation. 3. Litter input was high (600–700g DW m?2yr?1) and seasonal, with 30–50% of the annual total entering the stream during December—February (summer). However, seasonality was not as great as that recorded in Northern Hemisphere deciduous forest streams. 4. Leaves comprised the largest litter component, but represented a relatively smaller proportion of the litter than is usually the case in Northern Hemisphere deciduous forest streams; in contrast bark was a relatively large proportion of the litter. 5. At the sites flowing through pasture, litter accession was about two orders of magnitude lower than at the forested sites.  相似文献   

7.
Mangrove forests are active carbon sinks and important for nutrient cycling in coastal ecosystems. Restoration of degraded mangrove habitats enhances return of ecosystem goods and services, including carbon sequestration. Our objective was to assess the restoration of primary productivity of reforested mangrove stands in comparison with natural reference stands in Gazi Bay, Kenya. Litter fall data were collected in nine Rhizophora mucronata and Sonneratia alba monospecific stands by use of litter traps over 2 years. Litter was emptied monthly, dried, sorted, and weighed. The reforested and natural stands showed seasonality patterns only in the production of reproductive material. Leaves constituted the highest percentage to total litter fall. Litter productivity rates for the R. mucronata stands were not significantly different and ranged from 6.61–10.15 to 8.36–11.02 t ha?1 yr?1 for the restored and natural stands, respectively. The productivity of 5 years R. mucronata stands reached 5.22 t ha?1 yr?1 and was significantly different from other stands. Litter productivity rates for S. alba stands was 7.77–7.85 for the restored stands and 10.15 t ha?1 yr?1 for the natural stand but differences were not significant. Our results indicate that plantations of at least 11 years have attained litter productivity rates comparable to the natural forests. This suggests that productivity of replanted mangroves is likely to reach complete recovery by this age under the prevailing environmental conditions.  相似文献   

8.
Investigation of marine eukaryotic picoplankton composition is limited by missing morphological features for appropriate identification. Consequently, molecular methods are required. In this study, we used 454‐pyrosequencing to study picoplankton communities at four stations in the West Spitsbergen Current (WSC; Fram Strait). High abundances of Micromonas pusilla were detected in the station situated closest to Spitsbergen, as seen in surveys of picoplankton assemblages in the Beaufort Sea. At the other three stations, other phylotypes, affiliating with Phaeocystis pouchetii and Syndiniales in the phylogenetic tree, were present in high numbers, dominating most of them. The picoplankton community structures at three of the stations, all with similar salinity and temperature, were alike. At the fourth station, the influence of the East Spitsbergen Current, transporting cold water from the Barents Sea around Spitsbergen, causes different abiotic parameters that result in a significantly different picoeukaryote community composition, which is dominated by M. pusilla. This observation is particularly interesting with regard to ongoing environmental changes in the Arctic. Ongoing warming of the WSC could convey a new picoplankton assemblage into the Arctic Ocean, which may come to affect the dominance of M. pusilla.  相似文献   

9.
Information about the sites of catches of the sea lamprey Petromyzon marinus in the western Barents Sea and Arctic lamprey Lethenteron camtschaticum in the Barents and White seas is presented based on the data of trawl surveys performed in 2004?2016. It is demonstrated that sea lamprey is occasionally encountered in the western Barents Sea; nine specimens have been recorded during the entire period of surveys. The northernmost point of a capture of sea lamprey is located near 76° N and the easternmost point is at 31°15′ E. Arctic lamprey is not numerous in the Barents and White seas; a total of 66 and 17 specimens have been caught, respectively. Its local aggregations are found in the southeastern part of the Barents Sea and in Dvina Bay in the White Sea. Arctic lamprey penetrates to the north to 76° N and into the central part of the Barents Sea.  相似文献   

10.
1. Low organic matter availability is thought to be a primary factor influencing evolutionary and ecological processes in cave ecosystems. We examined links among organic matter abundance, macroinvertebrate community structure and breakdown rates of red maple (Acer rubrum) and corn litter (Zea mays) in coarse‐ (10 × 8 mm) and fine‐mesh (500‐μm) litter bags over two seasonal periods in four cave streams in the south‐eastern U.S.A. 2. Organic matter abundance differed among cave streams, averaging from near zero to 850 g ash‐free dry mass m?2. Each cave system harboured a different macroinvertebrate community. However, trophic structure was similar among caves, with low shredder biomass (2–17% of total biomass). 3. Corn litter breakdown rates (mean k = 0.005 day?1) were faster than red maple (mean k = 0.003 day?1). Breakdown rates in coarse‐mesh bags (k = 0.001–0.012 day?1) were up to three times faster than in fine‐mesh bags (k = 0.001–0.004 day?1). Neither invertebrate biomass in litter bags nor breakdown rates were correlated with the ambient abundance of organic matter. Litter breakdown rates showed no significant temporal variation. Epigean (surface‐adapted) invertebrates dominated biomass in litter bags, suggesting that their effects on cave ecosystem processes may be greater than hypogean (cave‐adapted) taxa, the traditional focus of cave studies. 4. The functional diversity of our cave communities and litter breakdown rates are comparable to those found in previous litter breakdown studies in cave streams, suggesting that the factors that control organic matter processing (e.g. trophic structure of communities) may be broadly similar across geographically diverse areas.  相似文献   

11.
Summary We studied the effect of removing and adding plant litter in different seasons on biomass, density, and species richness in a Solidago dominated old-field community in New Jersey, USA. We removed all the naturally accumulated plant litter in November (658 g/m2) and in May (856 g/m2) and doubled the amount of litter in November and May in replicated plots (1 m2). An equal number of plots were left as controls. Litter removal and addition had little impact on total plant biomass or individual species biomass in the growing season following the manipulations. Litter removal, however, significantly increased plant densities but this varied depending upon the season of litter removal, species, and life history type. Specifically, the fall litter removal had a much greater impact than the spring litter removal suggesting that litter has its greatest impact after plant senescence in the fall and prior to major periods of early plant growth in spring. Annual species showed the greatest response, especially early in the growing season. Both spring and fall litter removal significantly increased species richness throughout the study. Litter additions in both spring and fall reduced both plant densities and species richness in June, but these differences disappeared near the end of the growing season in September. We concluded than in productive communities where litter accumulation may be substantial, litter may promote low species richness and plant density. This explanation does not invoke resource competition for the decline in species richness. Finally, we hypothesize that there may be broad thresholds of litter accumulation in different community types that may act to either increase or decrease plant yield and diversity.  相似文献   

12.
The regular sea urchin, Strongylocentrotus pallidus (G.O. Sars, 1871), is a widespread epibenthic species in high-Arctic waters. However, little is known about its distribution, standing stock, population dynamics and production. In the northern Barents Sea, S. pallidus was recorded on seabed still photographs at 10 out of 11 stations in water depths of 80–360?m. Mean abundances along photographic transects of 150–300 m length ranged between <0.1 and 14.7?ind. m?2 yielding a grand average of 3.6?ind.?m?2. The small-scale distribution along the transects was patchy, with densities varying from nil to an overall maximum of 25.5 ind. m?2, and exhibited a significant relation to the number of stones present. Sea urchin test diameters, measured on scaled photographs, extended from 7 to 90?mm. Median values at single stations varied from 14 to 46?mm, showing a significant inverse relationship to water depth. Biomass, estimated by combining photographic abundances, size frequencies and a size-mass function established with trawled specimens, ranged between <0.1 and 3.0?g ash-free dry mass m?2, averaging about 1.0?g ash free dry mass m?2. An analysis of skeletal growth bands in genital plates was carried out with 143 trawled individuals ranging in test diameter (D) from 4 to 48?mm. Assuming these bands to represent annual growth marks, the ages of the specimens analysed ranged between 3 and 42 years. A von Bertalanffy function was fitted to size-at-age data to model individual growth pattern (D?=?102.3?mm, k?=?0.011 year?1, t0?=?0.633?year). The annual mortality rate Z of the population in the northern Barents Sea was estimated from a size-converted catch curve to be 0.08 year?1. Applying the weight-specific growth rate method, the average P/B ratio and the mean annual production of this population were estimated as 0.07 year?1 and 0.076?g AFDM m?2 year?1, respectively. In conclusion, S. pallidus is characterized by slow growth, low mortality, high longevity and low productivity. Because of its relatively high biomass, it is considered to contribute significantly to total benthic standing stock and carbon flux in the study area.  相似文献   

13.
14.
The distribution and abundance of jellyfish of the family Ulmaridae was studied based on the data of trawl surveys conducted in the Sea of Okhotsk (1998–2006) and the Sea of Japan (2003) in the fall. The jellyfish Aurelia aurita mainly inhabits the waters of the Sea of Japan, while in the Sea of Okhotsk small quantities of this species were recorded in southern areas, and solitary individuals, off North Sakhalin. Aurelia limbata tends to shelf waters of the Sea of Okhotsk, being less abundant in the southern deepwater area and in the Sea of Japan. Phacellophora camtschatica, in contrast, aggregates mostly over deep basins, whereas in shallow areas a significant quantity of this species was found only off West Kamchatka. In the northern Sea of Okhotsk, the species A. limbata dominated in biomass and abundance among Ulmaridae. During the studied period, its biomass varied from 27 to 803 kg/km2 and its abundance varied from 69 to 1706 ind/km2. In the southern Sea of Okhotsk, as a rule, P. camtschatica prevailed (1–16 kg/km2 and 6–46 ind/km2). In the Sea of Japan, the most abundant species was A. aurita (29 kg/km2 and 104 ind/km2). The jellyfish size structure in catches is presented.  相似文献   

15.
Litter decomposition rates and the population densities of soil microarthropods were measured in three Pinus pinaster stands thirty-one, twenty-three and eighteen years old, and on an area of native vegetation on sandy soil at Gnangara, W.A. Litter decomposition was faster in the soil than within the litter layer and was slowest at the litter surface. Decomposition was rapid in cool wet seasons and slow in hot, dry summers. Microarthropod population densities were similar on all sites (77–100 × 103/m2) but species diversity was greatest under native vegetation and least under the youngest pine stand. The impoverished soil micro-fauna of the pine stands is unable to decompose pine or sclerophyll litter as fast as the full complement of soil microfauna in native vegetation.  相似文献   

16.
Estimating the abundance and density of mountain ungulates is difficult because of rugged and remote terrain, high elevations, and rapidly changing weather. Helicopter surveys could overcome these problems, but researchers have seldom applied helicopter-based survey methods at large spatial scales in mountain terrain. We used helicopters to count introduced Himalayan tahr (Hemitragus jemlahicus) at 117 plots, each of 4 km2, in New Zealand's Southern Alps during 2016–2019. The sampling frame was 7,844 km2 and we located the plots at the vertices of an 8-km grid superimposed over the sampling frame (i.e., a systematic random sampling design). We conducted 3 repeat counts at each plot during summer–autumn. We used the repeat counts to estimate tahr abundance and density, corrected for imperfect detection, using a dynamic N-mixture model for open populations. We estimated the population of tahr in the sampling frame using design-based, finite sampling methods and model-based inference procedures. The mean estimated density of tahr on each plot varied from zero to 31.7 tahr/km2. The mean densities of tahr varied among management units, ranging from 0.3 to 10.7 tahr/km2, and exceeded specified intervention densities in 6 of the 7 management units. The total design-based estimate of tahr abundance in the sampling frame was 34,500 (95% CI = 27,750–42,900), with a coefficient of variation (CV) of 0.11. The corresponding model-based estimate of total abundance was similar (34,550, 95% CI = 30,250–38,700) but was substantially more precise (CV = 0.06) than the design-based estimate. The precision of the estimates for the individual management units was also better than that of the design-based estimates, with CVs of <0.20 for all but 1 management unit. Our study provides a repeatable method for sampling mountain ungulates. More generally, robust estimation of abundance and density of mountain ungulates is possible by combining aerial surveys and open population models with an objective, probabilistic sampling design.  相似文献   

17.
  • 1.1. Females, copepodid stages V and IV of Calanus finmarchicus were collected in Fram Strait area of the Arctic and in the northern North Sea to compare their lipid composition.
  • 2.2. For the comparison only copepods were considered which contained more than 8% of 18:4 fatty acid and high amounts of wax esters to exclude seasonal and spatial variabilities and different reproductive status of females.
  • 3.3. Animals are heavier in the Fram Strait area than in the North Sea with similar lipid proportion of dry weight and wax ester proportion of total lipid.
  • 4.4. Only some statistical significant differences exist between the fatty acid and alcohol compositions. The levels of 16:0 acid and alcohol and of 22:1 alcohol are higher and of 20:1 acid and alcohol are lower in the North Sea than in the Arctic.
  相似文献   

18.
Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2‐induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi‐arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L?1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L?1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr?1 or 7.8±0.7 g m?2 yr?1 for 1998 litter; 18±3% yr?1 or 2.2±0.4 g m?2 yr?1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m?2 yr?1; elev. CO2: 35.0±1.1 g m?2 yr?1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m?2, elev. CO2: 13.3±3.4 g m?2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year‐to‐year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.  相似文献   

19.
Population surveys of Sulawesi crested black macaques (Macaca nigra) were conducted on the Indonesian islands of Sulawesi and Bacan in 1992–1994 to assess the status of natural populations and determine habitat and anthropogenic factors affecting their population densities. We surveyed five sites for primates, including undisturbed and disturbed habitats. Data were collected on habitat structure and composition at two undisturbed and one disturbed forest site in which the primates were surveyed. The highest density of macaques was found in primary forest at Gunung Sibela Nature Reserve on Bacan (170.3 individuals/km2). Population density in logged forest on Bacan was high but significantly less than primary forest (133.4 individuals/km2). The high density of crested black macaques in primary forest on Bacan is best explained by the high carrying capacity found in primary forest. The lower food quantity and quality of food resources found in logged forest correlated with lower primate densities compared to primary forest. However, the large population of macaques in logged forest demonstrates the conservation value of such forest. Densities on Sulawesi at Tangkoko-Batuangas-DuaSudara Nature Reserve (TBDS) showed a continuing decline since earlier surveys. Primate densities were highest near the protected center of Tangkoko Reserve (66.7 individuals/km2). The peripheral areas of Batuangas and DuaSudara, even though adjacent and continuous, showed lower population densities of 46.4 and 23.5 individuals/km2, respectively. The best explanation for the continued decline of Macaca nigra populations at TBDS is hunting. Unless conservation measures are implemented immediately, M. nigra on Sulawesi risks extinction in the near future. Am. J. Primatol. 44:89–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
An 0-group fish survey is conducted annually in the Barents Sea in order to estimate fish population abundance. Data on jellyfish by-catch have been recorded since 1980, although this dataset has never been analysed. In recent years, however, the ecological importance of jellyfish medusae has become widely recognized. In this paper the biomass of jellyfish (medusae) in 0–60 m depths is calculated for the period 1980–2010. During this period the climate changed from cold to warm, and changes in zooplankton and fish distribution and abundance were observed. This paper discusses the less well known ecosystem component; jellyfish medusae within the Phylum Cnidaria, and their spatial and temporal variation. The long term average was ca. 9×108 kg, with some years showing biomasses in excess of 5×109 kg. The biomasses were low during 1980s, increased during 1990s, and were highest in early 2000s with a subsequent decline. The bulk of the jellyfish were observed in the central parts of the Barents Sea, which is a core area for most 0-group fishes. Jellyfish were associated with haddock in the western area, with haddock and herring in the central and coastal area, and with capelin in the northern area of the Barents Sea. The jellyfish were present in the temperature interval 1°C<T<10°C, with peak densities at ca. 5.5°C, and the greatest proportion of the jellyfish occurring between 4.0–7.0°C. It seems that the ongoing warming trend may be favourable for Barents Sea jellyfish medusae; however their biomass has showed a recent moderate decline during years with record high temperatures in the Barents Sea. Jellyfish are undoubtedly an important component of the Barents Sea ecosystem, and the data presented here represent the best summary of jellyfish biomass and distribution yet published for the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号