首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of ocean acidification on key ocean calcifiers is predicted to be imminent, particularly in high-latitude ecosystems. Long-term field observations are essential to ground truth predictions of change in regional ecosystems. Here, we report on aragonitic pteropods collected to sediment traps at 800 m depth at 54°S, 140°E in the Polar Frontal Zone (PFZ) of the Southern Ocean from 1997 to 2007. Statistically significant trends were not identified in either mass or number flux from 1997 to 2007; however, differences emerged in decadal trends seen in shell weight for each of the three common taxa collected: Limacina helicina antarctica forma antarctica shells became significantly lighter (P < 0.05), L. retroversa australis shells became significantly heavier (P < 0.05) and L. helicina antarctica forma rangi shells did not change significantly. These results suggest that factors other than ocean acidification affect pteropod population variations on decadal timescales, with the potential to either amplify or counter the impact of decreasing aragonite saturation state, at least in the short term. Comparison to sea surface temperature and chlorophyll biomass did not identify these as significant drivers of the observed changes, and attribution across these multiple variables requires better understanding of pteropod physiology and ecology. Our PFZ pelagic pteropod observations provide a reference for evaluation of southern polar pteropod responses to changing ocean conditions in coming decades. Importantly, these data also raise the issue of taxonomic care when monitoring the region for impacts of ocean acidification on calcifiers.  相似文献   

2.
Anthropogenic inputs of CO2 are altering ocean chemistry and may alter the role of marine calcifiers in ocean ecosystems. Laboratory research and ocean models suggest calcifiers in polar waters are especially at risk, particularly pteropods: pelagic aragonite-shelled molluscs. However, baseline data for natural populations of pteropods are limited, especially for polar and sub-polar waters. In order to establish baseline data on diversity, preservation state and shell flux of in situ populations of Sub-Antarctic Southern Ocean pteropods, we deployed sediment traps above (1,000 m) and below (2,000 m) the aragonite saturation horizon (ASH) (currently at 1,200 m) from 1997 to 2006 at 47°S, 142°E. We identified seven pteropod taxa. We applied a shell opacity index to each shell collected and found 50% of shells collected above the ASH to be in pristine condition but only 3% of the shells collected below the ASH showed such a high degree of preservation. We estimated pteropod shell mass fluxes for the region (0.17–4.99 mg m−2 day−1), and we identified significant reductions in shell flux for Limacina helicina antarctica forma rangi and Clio recurva to the trap series above the ASH and for Limacina helicina antarctica forma rangi and Limacina helicina antarctica forma antarctica to the trap series below the ASH over the interval 1997–2006. Our data establish a temporal and vertical snapshot of the current Sub-Antarctic pelagic pteropod community and provide a baseline against which to monitor Southern Ocean pteropods responses, if any, to changing ocean conditions projected for the region in the coming decades.  相似文献   

3.
Shelled pteropods, known as sea butterflies, are a group of small gastropods that spend their entire lives swimming and drifting in the open ocean. They build thin shells of aragonite, a metastable polymorph of calcium carbonate. Pteropod shells have been shown to experience dissolution and reduced thickness with a decrease in pH and therefore represent valuable bioindicators to monitor the impacts of ocean acidification. Over the past decades, several studies have highlighted the striking diversity of shell microstructures in pteropods, with exceptional mechanical properties, but their evolution and future in acidified waters remains uncertain. Here, we revisit the body-of-work on pteropod biomineralization, focusing on shell microstructures and their evolution. The evolutionary history of pteropods was recently resolved, and thus it is timely to examine their shell microstructures in such context. We analyse new images of shells from fossils and recent species providing a comprehensive overview of their structural diversity. Pteropod shells are made of the crossed lamellar and prismatic microstructures common in molluscs, but also of curved nanofibers which are proposed to form a helical three-dimensional structure. Our analyses suggest that the curved fibres emerged before the split between coiled and uncoiled pteropods and that they form incomplete to multiple helical turns. The curved fibres are seen as an important trait in the adaptation to a planktonic lifestyle, giving maximum strength and flexibility to the pteropod thin and lightweight shells. Finally, we also elucidate on the candidate biomineralization genes underpinning the shell diversity in these important indicators of ocean health.  相似文献   

4.
The long wavelength, low-frequency modes of motion are the relevant motions for understanding the continuum mechanical properties of biomolecules. By examining these low-frequency modes, in the context of a spherical harmonic basis set, we identify four elastic moduli that are required to describe the two-dimensional elastic behavior of capsids. This is in contrast to previous modeling and theoretical studies on elastic shells, which use only the two-dimensional Young's modulus (Y) and the bending modulus (κ) to describe the system. Presumably, the heterogeneity of the structure and the anisotropy of the biomolecular interactions lead to a deviation from the homogeneous, isotropic, linear elastic shell theory. We assign functional relevance of the various moduli governing different deformation modes, including a mode primarily sensed in atomic force microscopy nanoindentation experiments. We have performed our analysis on the T = 3 cowpea chlorotic mottle virus and our estimate for the nanoindentation modulus is in accord with experimental measurements.  相似文献   

5.
This investigation reports the nanomechanical properties of shallow water shrimp exoskeleton at temperatures ranging from 30 ℃ to 80 ℃ measured using nanoindentation experiments. Scanning Electron Microscopy (SEM) measurements suggest that the shrimp exoskeleton has the Bouligand structure in its layers, a key characteristic of the crustaceans. The thickness of the layers and packing density are found to be different from that of lobsters and crabs reported earlier in the literature. Mechanical properties at high temperatures are determined using micro materials nanoindentation test set up combined with the hot stage. The properties measured during nanoindentation test are corrected for the creep and thermal drift during the experiments. The reduced modulus values are found to be around 28 GPa at 30 ℃ that reduces to approximately 24 GPa at 80 ℃. The hardness values also decrease from 1.6 GPa at 30 ℃ to around 1.2 GPa at 80 ℃. The indentation size effect is found to be absent at all temperatures. Creep mechanisms of polymers like materials and its temperature dependence are discussed to give more insight into the deformation mechanism.  相似文献   

6.
Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross‐section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross‐sections from the occlusal surface to the dentin‐enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from ~6% near the occlusal surface to ~20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Nanoindentation and storage of teeth   总被引:10,自引:0,他引:10  
This study determined changes in nanomechanical properties of dentin and enamel during storage in deionized water, calcium chloride buffered saline solution and Hank's balanced salts solution (HBSS). Atomic force microscopy based nanoindentation showed that storing teeth in deionized water or CaCl(2)-solution resulted in a large decrease in elastic modulus and hardness. At 1 day a decrease in the mechanical properties values of up to 20% and 30% was observed for enamel and dentin, respectively. After 1 week, mechanical properties dropped below 50% of their starting values, which is attributed to a demineralization process during storage. In contrast, storing teeth in HBSS did not significantly alter the mechanical properties for a time interval of 2 weeks. The use of HBSS for storage of samples from teeth is recommended.  相似文献   

8.
We measured distribution patterns of hardness and elastic modulus by nanoindentation on shells of the rhynchonelliform brachiopod Mergerlia truncata and the linguliform brachiopods Discradisca stella and Lingula anatina. The rhynchonelliformea produce calcitic shells while the linguliformea produce chitinophosphatic shells. Dorsal and ventral valves, commissure and hinge of the calcitic shell of M. truncata show different nanohardness values (from 2.3 to 4.6 GPa) and E-modulus (from 52 to 76 GPa). The hardness of the biocalcite is always increased compared to inorganic calcite. We attribute the effects to different amounts of inter- and intracrystalline organic matrix. Profiles parallel to the radius of curvature of the valves cutting through the different layers of shell material surprisingly show quite uniform values of nanohardness and modulus of elasticity. Nanoindentation tests on the chitinophosphatic brachiopods D. stella and L. anatina reflect the hierarchical structure composed of laminae with varying degree of mineralization. As a result of the two-phase composite of biopolymer nanofibrils reinforced with Ca-phosphate nanoparticles, nanohardness, and E-modulus correlate almost linearly from (H = 0.25 GPa, E = 2.5 GPa) to (H = 2.5 GPa, E = 50 GPa). The mineral provides stiffness and hardness, the biopolymer provides flexibility; and the composite provides fracture toughness. Gradients in the degree of mineralization reduce potential stress concentrations at the interface between stiff mineralized and soft non-mineralized laminae. For the epibenthic chitinophosphatic D. stella the lamination is also present but less pronounced than for the infaunal L. anatina, and the overall distribution of material strength in the cross-sectional profile shows a maximum in the center and a decrease towards the inner and outer shell margins (modulus of elasticity from 30 to 12 GPa, hardness from 1.7 to 0.5 GPa). Accordingly, the two epibenthic forms, calcitic M. truncata and chitinophosphatic D. stella display fairly bulky (homogeneous) nanomechanical properties of their shell materials, while the burrowing infaunal L. anatina is distinctively laminated. The strongly mineralized laminae, which provide the strength to the shell, are also brittle, but keeping them as thin as possible, allows some bending flexibility. This flexibility is not required for the epibenthic life style.  相似文献   

9.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

10.
Bleaching of teeth is gaining popularity due to cosmetic reasons. However, the effect it has on teeth is still largely unknown. This paper seeks to evaluate the effect of a bleaching agent, 30% hydrogen peroxide, on the nanomechanical properties of dentin and enamel using the nanoindentation technique. The Young's modulus and hardness obtained from nanoindentation before and after bleaching were compared. Five newly extracted human premolars were used. Nanoindentation was first done on the sliced enamel and dentin regions to determine their mechanical properties. One batch of samples was kept in Hank's balanced salt solution as control while the other was bleached in 30% hydrogen peroxide for 24h. The same number of nanoindentations was then done near the previously indented regions for both the control and bleached samples and the results compared. Using paired sample t-tests with alpha=0.05, it was found that there were no significant differences in both the Young's modulus and hardness of dentin and enamel kept in control. However, the mechanical properties of the bleached dentin were significantly decreased. For intertubular dentin, the mean hardness decreased by 29-55% and the mean Young's modulus decreased by 19-43%. For enamel, the mean hardness decreased by 13-32% while the mean Young's modulus decreased by 18-32%. The exact mechanism by which hydrogen peroxide affects the dentin and enamel has yet to be fully elucidated. However, it is observed to have an undermining effect on the nanomechanical properties of teeth.  相似文献   

11.
Material property changes in bone tissue with ageing are a crucial missing component in our ability to understand and predict age-related fracture. Cortical bone osteons contain a natural gradient in tissue age, providing an ideal location to examine these effects. This study utilized osteons from baboons aged 0-32 years (n=12 females), representing the baboon lifespan, to examine effects of tissue and animal age on mechanical properties and composition of the material. Tissue mechanical properties (indentation modulus and hardness), composition (mineral-to-matrix ratio, carbonate substitution, and crystallinity), and aligned collagen content (aligned collagen peak height ratio) were sampled along three radial lines in three osteons per sample by nanoindentation, Raman spectroscopy, and second harmonic generation microscopy, respectively. Indentation modulus, hardness, mineral-to-matrix ratio, carbonate substitution, and aligned collagen peak height ratio followed biphasic relationships with animal age, increasing sharply during rapid growth before leveling off at sexual maturity. Mineral-to-matrix ratio and carbonate substitution increased 12% and 6.7%, respectively, per year across young animals during growth, corresponding with a nearly 7% increase in stiffness and hardness. Carbonate substitution and aligned collagen peak height ratio both increased with tissue age, increasing 6-12% across the osteon radii. Indentation modulus most strongly correlated with mineral-to-matrix ratio, which explained 78% of the variation in indentation modulus. Overall, the measured compositional and mechanical parameters were the lowest in tissue of the youngest animals. These results demonstrate that composition and mechanical function are closely related and influenced by tissue and animal age.  相似文献   

12.
Measuring the microscopic mechanical properties of bone tissue is important in support of understanding the etiology and pathogenesis of many bone diseases. Knowledge about these properties provides a context for estimating the local mechanical environment of bone related cells thait coordinate the adaptation to loads experienced at the whole organ level. The objective of this study was to determine the effects of experimental testing parameters on nanoindentation measures of lamellar-level bone mechanical properties. Specifically, we examined the effect of specimen preparation condition, indentation depth, repetitive loading, time delay, and displacement rate. The nanoindentation experiments produced measures of lamellar elastic moduli for human cortical bone (average value of 17.7 +/- 4.0 GPa for osteons and 19.3 +/- 4.7 GPa for interstitial bone tissue). In addition, the hardness measurements produced results consistent with data in the literature (average 0.52 +/- 0.15 GPa for osteons and 0.59 +/- 0.20 GPa for interstitial bone tissue). Consistent modulus values can be obtained from a 500-nm-deep indent. The results also indicated that the moduli and hardnesses of the dry specimens are significantly greater (22.6% and 56.9%, respectively) than those of the wet and wet and embedded specimens. The latter two groups were not different. The moduli obtained at a 5-nm/s loading rate were significantly lower than the values at the 10- and 20-nm/s loading rates while the 10- and 20-nm/s rates were not significantly different. The hardness measurements showed similar rate-dependent results. The preliminary results indicated that interstitial bone tissue has significantly higher modulus and hardness than osteonal bone tissue. In addition, a significant correlation between hardness and elastic modulus was observed.  相似文献   

13.
Pteropods, a group of holoplanktonic gastropods, are regarded as bioindicators of the effects of ocean acidification on open ocean ecosystems, because their thin aragonitic shells are susceptible to dissolution. While there have been recent efforts to address their capacity for physiological acclimation, it is also important to gain predictive understanding of their ability to adapt to future ocean conditions. However, little is known about the levels of genetic variation and large‐scale population structuring of pteropods, key characteristics enabling local adaptation. We examined the spatial distribution of genetic diversity in the mitochondrial cytochrome c oxidase I (COI) and nuclear 28S gene fragments, as well as shell shape variation, across a latitudinal transect in the Atlantic Ocean (35°N–36°S) for the pteropod Limacina bulimoides. We observed high levels of genetic variability (COI π = 0.034, 28S π = 0.0021) and strong spatial structuring (COI ΦST = 0.230, 28S ΦST = 0.255) across this transect. Based on the congruence of mitochondrial and nuclear differentiation, as well as differences in shell shape, we identified a primary dispersal barrier in the southern Atlantic subtropical gyre (15–18°S). This barrier is maintained despite the presence of expatriates, a gyral current system, and in the absence of any distinct oceanographic gradients in this region, suggesting that reproductive isolation between these populations must be strong. A secondary dispersal barrier supported only by 28S pairwise ΦST comparisons was identified in the equatorial upwelling region (between 15°N and 4°S), which is concordant with barriers observed in other zooplankton species. Both oceanic dispersal barriers were congruent with regions of low abundance reported for a similar basin‐scale transect that was sampled 2 years later. Our finding supports the hypothesis that low abundance indicates areas of suboptimal habitat that result in barriers to gene flow in widely distributed zooplankton species. Such species may in fact consist of several populations or (sub)species that are adapted to local environmental conditions, limiting their potential for adaptive responses to ocean changes. Future analyses of genome‐wide diversity in pteropods could provide further insight into the strength, formation and maintenance of oceanic dispersal barriers.  相似文献   

14.
Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.  相似文献   

15.
The elastic behaviour of trabecular bone is a function not only of bone volume and architecture, but also of tissue material properties. Variation in tissue modulus can have a substantial effect on the biomechanical properties of trabecular bone. However, the nature of tissue property variation within a single trabecula is poorly understood. This study uses nanoindentation to determine the mechanical properties of bone tissue in individual trabeculae. Using an ovariectomised ovine model, the modulus and hardness distribution across trabeculae were measured. In both normal and ovariectomised bone, the modulus and hardness were found to increase towards the core of the trabeculae. Across the width of the trabeculae, the modulus was significantly less in the ovariectomised bone than in the control bone. However, in contrast to this hardness was found not to differ significantly between the two groups. This study provides valuable information on the variation of mechanical material properties in healthy and diseased trabecular bone tissue. The results of the current study will be useful in finite element modelling where more accurate values of trabecular bone modulus will enable the prediction of the macroscale behaviour of trabecular bone.  相似文献   

16.
In trabecular bone, each remodeling event results in the resorption and/or formation of discrete structural units called ‘packets’. These remodeling packets represent a fundamental level of bone’s structural hierarchy at which to investigate composition and mechanical behaviors. The objective of this study was to apply the complementary techniques of quantitative backscattered electron microscopy (qBSEM) and nanoindentation to investigate inter-relationships between packet mineralization, elastic modulus, contact hardness and plastic deformation resistance. Indentation arrays were performed across nine trabecular spicules from 3 human donors; these spicules were then imaged using qBSEM, and discretized into their composite remodeling packets (127 in total). Packets were classified spatially as peripheral or central, and mean contact hardness, plastic deformation resistance, elastic modulus and calcium content calculated for each. Inter-relationships between measured parameters were analysed using linear regression analyses, and dependence on location assessed using Student’s t-tests. Significant positive correlations were found between all mechanical parameters and calcium content. Elastic modulus and contact hardness were significantly correlated, however elastic modulus and plastic deformation resistance were not. Calcium content, contact hardness and elastic modulus were all significantly higher for central packets than for peripheral, confirming that packet mineral content contributes to micromechanical heterogeneity within individual trabecular spicules. Plastic deformation resistance, however, showed no such regional dependence, indicating that the plastic deformation properties in particular, are determined not only by mineral content, but also by the organic matrix and interactions between these two components.  相似文献   

17.
The effect of hydration on the mechanical properties of osteonal bone, in directions parallel and perpendicular to the bone axis, was studied on three length scales: (i) the mineralized fibril level (~100 nm), (ii) the lamellar level (~6 µm); and (iii) the osteon level (up to ~30 µm).We used a number of techniques, namely atomic force microscopy (AFM), nanoindentation and microindentation. The mechanical properties (stiffness, modulus and/or hardness) have been studied under dry and wet conditions. On all three length scales the mechanical properties under dry conditions were found to be higher by 30–50% compared to wet conditions. Also the mechanical anisotropy, represented by the ratio between the properties in directions parallel and perpendicular to the osteon axis (anisotropy ratio, designated here by AnR), surprisingly decreased somewhat upon hydration. AFM imaging of osteonal lamellae revealed a disappearance of the distinctive lamellar structure under wet conditions. Altogether, these results suggest that a change in mineralized fibril orientation takes place upon hydration.  相似文献   

18.
The senescence accelerated mouse, strain P6 (SAMP6) has been described as a model of senile osteoporosis. Recent results from whole-bone bending tests indicate that, despite having increased moments of inertia, SAMP6 long bones are weak and brittle compared to SAMR1 controls. In the current study we determined material properties of cortical bone from SAMP6 and SAMR1 femora and tibiae by two methods-nanoindentation and whole-bone bending tests combined with simple beam theory. We hypothesized that: (1) SAMP6 mice have reduced cortical bone material properties compared to SAMR1 controls; and (2) modulus estimated from whole-bone bending tests correlates well with modulus determined by nanoindentation. Results from nanoindentation indicated that modulus and hardness are approximately 10% higher in SAMP6 mice compared to SAMR1 controls (p<0.001), a finding consistent with slightly higher mineralization in SAMP6 bones. Despite their superior elastic and hardness properties, the bending failure properties of SAMP6 bones were markedly inferior--ultimate stress and toughness were reduced by 40% and 60%, respectively (p<0.001). Comparisons between the two testing methods for determining modulus showed poor agreement. Modulus estimated from whole-bone bending tests was not correlated with modulus determined by nanoindentation (p=0.054; r2=0.03) and the absolute values differed by a factor of five between the two methods (bending [wet], 6GPa; nanoindentation [dry], 31GPa). Moreover, relative differences between groups were inconsistent between the two methods. We conclude: (1) cortical bone from the SAMP6 mouse has increased modulus and hardness but poor material strength and toughness, which underscores the relevance of the SAMP6 mouse for studies of skeletal fragility, and (2) values of elastic modulus of bone tissue estimated using simple beam theory and bending tests of mouse femora and tibiae are inaccurate and should be interpreted with caution.  相似文献   

19.
Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean.  相似文献   

20.
The interpretation of the function of the ammonoid phragmocone as a buoyancy device is now widely accepted among ammonoid researchers. During the 20th century, several theoretical models were proposed for the role of the chambered shell (phragmocone); accordingly, the phragmocone had hydrostatic properties, which enabled it to attain neutral buoyancy, presuming it was partially filled with gas. With new three‐dimensional reconstructions of ammonoid shells, we are now able to test these hypothetical models using empirical volume data of actual ammonoid shells. We investigated three Palaeozoic ammonoids (Devonian and Carboniferous), namely Fidelites clariondi, Diallagites lenticulifer and Goniatites multiliratus, to reconstruct their hydrostatic properties, their syn vivo shell orientation and their buoyancy. According to our models, measurements and calculations, these specimens had aperture orientations of 19°, 64° and 125° during their lives. Although none of our results coincide with the aperture orientation of the living Nautilus, they do verify the predictions for shell orientations based on published theoretical models. Our calculations also show that the shorter the body chamber, the poorer was the hydrodynamic stability of the animal. This finding corroborates the results of theoretical models from the 1990s. With these results, which are based on actual specimens, we favour the rejection of hypotheses suggesting a purely benthonic mode of life of ammonoids. Additionally, it is now possible to assess hydrodynamic properties of the shells through ontogeny and phylogeny, leading to insights to validate theoretical modes of life and habitat through the animal's life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号