首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascidians (Ascidiacea: Tunicata) are sessile suspension feeders that represent dominant epifaunal components of the Southern Ocean shelf benthos and play a significant role in the pelagic–benthic coupling. Here, we report the results of a first study on the relationship between the distribution patterns of eight common and/or abundant (putative) ascidian species, and environmental drivers in the waters off the northern Antarctic Peninsula. During RV Polarstern cruise XXIX/3 (PS81) in January–March 2013, we used seabed imaging surveys along 28 photographic transects of 2 km length each at water depths from 70 to 770 m in three regions (northwestern Weddell Sea, southern Bransfield Strait and southern Drake Passage), differing in their general environmental setting, primarily oceanographic characteristics and sea-ice dynamics, to comparatively analyze the spatial patterns in the abundance of the selected ascidians, reliably to be identified in the photographs, at three nested spatial scales. At a regional (100-km) scale, the ascidian assemblages of the Weddell Sea differed significantly from those of the other two regions, whereas at an intermediate 10-km scale no such differences were detected among habitat types (bank, upper slope, slope, deep/canyon) on the shelf and at the shelf break within each region. These spatial patterns were superimposed by a marked small-scale (10-m) patchiness of ascidian distribution within the 2-km-long transects. Among the environmental variables considered in our study, a combination of water-mass characteristics, sea-ice dynamics (approximated by 5-year averages in sea-ice cover in the region of or surrounding the photographic stations), as well as the seabed ruggedness, was identified as explaining best the distribution patterns of the ascidians.  相似文献   

2.
Sponge communities on the Antarctic continental shelf currently represent one of the most extensive sponge grounds in the world, and all sponge classes are known to occur in the Southern Ocean. Main objectives of this study conducted at the tip of the Antarctic Peninsula were (1) to identify all sampled sponges and (2) to investigate whether the species composition and species richness of Southern Ocean sponge communities in the area of the Antarctic Peninsula are significantly influenced by environmental variables. The studied material originated from 25 AGT catches and was sampled during the expedition ANT-XXIX/3 of RV Polarstern. Samples were collected in three large-scale areas in the vicinity of the Antarctic Peninsula: Bransfield Strait, Drake Passage and Weddell Sea. The following six environmental variables were measured from bottom water samples (except for sea-ice cover): depth (m), light transmission (%), oxygen (µmol/kg), salinity, sea-ice cover (%) and temperature (°C). Two hundred and sixty-three sponge samples were analyzed, and 81 species of 33 genera from all Porifera classes (Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha) were identified. Total numbers of sponge species per sample station ranged from 1 to 29. A detrended correspondence analysis and a backward-stepwise model selection were performed to check whether species composition and richness were significantly influenced by environmental variables. The analyses revealed that none of the measured environmental variables significantly influenced species composition but that species richness was significantly influenced by (1) temperature and (2) the combination of temperature and depth. Results of this study are of crucial importance for development, performance and assessment of future protection strategies in case of ongoing climatic changes at the Antarctic Peninsula.  相似文献   

3.
The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well‐delimited regions of common species composition and environmental settings. These so‐called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two‐step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub‐Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.  相似文献   

4.
Recent research on Arctic benthos: common notions need to be revised   总被引:8,自引:7,他引:1  
Increased public awareness of the global significance of polar regions and opening of the Russian Arctic to foreign researchers have led to a pronounced intensification of benthic research in Arctic seas. The wealth of information gathered in these efforts has markedly enhanced our knowledge on the Arctic benthos. While some scientific concepts have been corroborated by the novel findings (e.g., low endemism and high faunistic affinity to northern Atlantic assemblages), other common notions need to be revised, particularly with regard to the often-cited differences between Arctic seas and the Southern Ocean. It has been demonstrated that benthos assemblages vary broadly in diversity between Arctic regions and that, hence, the idea of a consistently poor Arctic benthos—being in stark contrast to the rich Antarctic bottom fauna—is an undue overgeneralization. In terms of biogeographic diversity, both Arctic and Antarctic waters seem to be characterized by intermediate species richness. Levels of disturbance—a major ecological agent known to heavily affect benthic diversity and community structure—have been assumed to be relatively high in the Arctic but exceptionally low in the Southern Ocean. The discovery of the great role of iceberg scouring in Antarctic shelf ecosystems, which has largely been overlooked in the past, calls for a reconsideration of this notion. The novel data clearly demonstrate that there are marked differences in geographical and environmental setting, impact of fluvial run-off, pelagic production regime, strength of pelago–benthic coupling and, hence, food supply to the benthos among the various Arctic seas, impeding the large-scale generalization of local and regional findings. Field evidence points to the great significance of meso-scale features in hydrography and ice cover (marginal ice zones, polynyas, and gyres) as ‘hot spots’ of tight pelago–benthic coupling and, hence, high benthic biomass. In contrast, the importance of terrigenic organic matter discharged to the Arctic seas through fluvial run-off as an additional food source for the benthos is still under debate. Studies on the partitioning of energy flow through benthic communities strongly suggest that megafauna has to be adequately considered in overall benthic energy budgets and models of carbon cycling, particularly in Arctic shelf systems dominated by abundant echinoderm populations. Much progress has been made in the scientific exploration of the deep ice-covered Arctic Ocean. There is now evidence that it is one order of magnitude more productive than previously thought. Therefore, the significance of shelf–basin interactions, i.e., the importance of excess organic carbon exported from productive shelves to the deep ocean, is still debated and, hence, a major topic of on-going research. Another high-priority theme of current/future projects are the ecological consequences of the rapid warming in the Arctic. Higher water temperatures, increased fluvial run-off and reduced ice cover will give rise to severe ecosystem changes, propagating through all trophic levels. It is hypothesized that there would be a shift in the relative importance of marine biota in the overall carbon and energy flux, ultimately resulting in a switch from a ‘sea-ice algae–benthos’ to a ‘phytoplankton–zooplankton’ dominance.  相似文献   

5.
Throughout the Quaternary, the continental-based Antarctic ice sheets expanded and contracted repeatedly. Evidence suggests that during glacial maxima, grounded ice eliminated most benthic (bottom-dwelling) fauna across the Antarctic continental shelf. However, paleontological and molecular evidence indicates most extant Antarctica benthic taxa have persisted in situ throughout the Quaternary. Where and how the Antarctic benthic fauna survived throughout repeated glacial maxima remain mostly hypothesised. If understood, this would provide valuable insights into the ecology and evolution of Southern Ocean biota over geological timescales. Here we synthesised and appraised recent studies and presented an approach to demonstrate how genetic data can be effective in identifying where and how Antarctic benthic fauna survived glacial periods. We first examined the geological and ecological evidence for how glacial periods influenced past species demography in order to provide testable frameworks for future studies. We outlined past ice-free areas from Antarctic ice sheet reconstructions that could serve as glacial refugia and discussed how benthic fauna with pelagic or non-pelagic dispersal strategies moved into and out of glacial refugia. We also reviewed current molecular studies and collated proposed locations of Southern Ocean glacial refugia on the continental shelf around Antarctica, in the deep sea, and around sub-Antarctic islands. Interestingly, the proposed glacial refugia based on molecular data generally do not correspond to the ice-free areas identified by Antarctic ice sheet reconstructions. The potential biases in sampling and in the choice of molecular markers in current literature are discussed, along with the future directions for employing testable frameworks and genomic methods in Southern Ocean molecular studies. Continued data syntheses will elucidate greater understanding of where and how Southern Ocean benthic fauna persisted throughout glacial periods and provide insights into their resilience against climate changes in the future.  相似文献   

6.
Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM) the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today''s fauna. Here, we use for the first time specific Species Distribution Models (SDMs) for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos.  相似文献   

7.
The Scotia Arc is the only shallow-water and island bridge linking nowadays Patagonia and the Antarctic. The Antarctic Circumpolar Current as an oceanographic peculiarity makes this region an interesting biogeographic transition zone, because this frontal system traditionally is said to isolate the Antarctic fauna from that of the adjacent northern ecosystems. Based on benthos samples from three expeditions onboard R/V Polarstern, we studied distribution patterns of 200 polychaete species and 34 major benthic taxa in order to evaluate the role of polychaetes in the benthic realm of this part of the Southern Ocean. ANOSIM test distinguished three station groups: the central eastern Scotia Sea, the continental shelf off South America and stations at the tip of the Antarctic Peninsula. These station groups differed in organism densities and diversities with stations at the tip of the Antarctic Peninsula hosting the most diverse and dense community. The polychaete diversity patterns in the three assemblages evidenced closer connectivity between the tip of the Antarctic Peninsula and the central eastern Scotia Sea than between the continental shelf off South America with either the stations off the tip of the Peninsula or the central eastern Scotia Sea. This is probably supported by the Polar Front, which divides the island chain into two branches. Species distribution and community patterns of polychaetes appear to be associated with oceanographic and sediment conditions in this region. Most of the shared species showed the capability to tolerate differences in hydrostatic pressure. We suggest that the islands of the Scotia Sea may constitute a bridge for exchange of benthic species, particularly for polychaetes with eurybathic distribution and high dispersal capabilities.  相似文献   

8.
The aim of this study was to contribute to a general understanding of the response of the Antarctic macrobenthos to environmental variability and climate-induced changes. The change in population size of selected macrobenthic organisms was investigated in the Larsen A area east of the Antarctic Peninsula in 2007 and 2011 using ROV-based imaging methods. The results were complemented by data from the Larsen B collected in 2007 to allow a conceptual reconstruction of the environment-driven changes before the period of investigation. Both Larsen areas are characterised by ice-shelf disintegration in 1995 and 2002, respectively, as well as high inter-annual variability in sea-ice cover and oceanographic conditions. In 2007 one ascidian species, Molgula pedunculata, was abundant north and south of the stripe of remaining ice shelf between Larsen A and B. Population densities decreased drastically in the Larsen A between 2007 and 2011, coincident with the decrease in Corella eumyota, another ascidian. Among the ophiuroids, the population of deposit feeders increased, while suspension feeders halved their abundance. Current measurements indicated a northward flow between the Larsen B and Larsen A, suggesting that a major physical forcing on benthic population development comes from the South. The results demonstrate that Antarctic macrobenthic populations can exhibit dramatic population dynamics. Analyses of sea-ice dynamics, salinity, temperature and surprisingly ice-shelf disintegration history, however, did not provide any clear evidence for environmental drivers underlying the apparent changes.  相似文献   

9.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

10.
Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.  相似文献   

11.
An international effort is underway to establish a representative system of marine protected areas (MPAs) in the Southern Ocean to help provide for the long-term conservation of marine biodiversity in the region. Important to this undertaking is knowledge of the distribution of benthic assemblages. Here, our aim is to identify the areas where benthic marine assemblages are likely to differ from each other in the Southern Ocean including near-shore Antarctica. We achieve this by using a hierarchical spatial classification of ecoregions, bathomes and environmental types. Ecoregions are defined according to available data on biogeographic patterns and environmental drivers on dispersal. Bathomes are identified according to depth strata defined by species distributions. Environmental types are uniquely classified according to the geomorphic features found within the bathomes in each ecoregion. We identified 23 ecoregions and nine bathomes. From a set of 28 types of geomorphic features of the seabed, 562 unique environmental types were classified for the Southern Ocean. We applied the environmental types as surrogates of different assemblages of biodiversity to assess the representativeness of existing MPAs. We found that 12 ecoregions are not represented in MPAs and that no ecoregion has their full range of environmental types represented in MPAs. Current MPA planning processes, if implemented, will substantially increase the representation of environmental types particularly within 8 ecoregions. To meet internationally agreed conservation goals, additional MPAs will be needed. To assist with this process, we identified 107 spatially restricted environmental types, which should be considered for inclusion in future MPAs. Detailed supplementary data including a spatial dataset are provided.  相似文献   

12.
Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.  相似文献   

13.
Impacts of climate change on polar seas The polar seas in the Arctic and Antarctic are characterized by extreme cold and the prevalence of sea ice, which provides a unique polar habitat but also strongly affects the pelagic and benthic biota beneath. Life conditions for the marine fauna and flora differ considerably between the Arctic and Southern Oceans, as a result of contrasts in geography, geological history, as well as seasonal dynamics in light regime, sea ice cover and, hence, biological production. Climate change is particularly obvious in the Arctic Ocean and off the Antarctic Peninsula where warming results in a rapid shrinkage of the summer sea ice cover. Such decline threatens the sea‐ice communities and their associated fauna and will also have far reaching effects for the plankton and benthos of the polar seas.  相似文献   

14.
Twenty one species of seabirds plus fur seals were observed at sea near the Antarctic Peninsula, between 60 °–68 °S, in May and June 1986, a season for which few published observations of marine animals are available for this area. Here we describe and quantify the importance of fishing activities as well as sea-ice cover and other environmental variables to the distribution patterns of birds and seals. The most striking aspect of the winter avifauna was its pronounced concentration near fishing trawlers operating on the continental shelf to the north and west of Elephant Island, and its temporal shift in response to the seasonal advance of the ice edge.  相似文献   

15.
The basin off the Bellingshausen Sea, in contrast to other better known areas such as the Antarctic Peninsula and the Ross and Weddell Seas, has been little investigated due to remoteness and the prevalence of ice for most of the year. The present study focuses on an analysis of polychaetes collected from soft bottoms of this sea and off the west coast of the Antarctic Peninsula (Gerlache Strait) by means of a box-corer (25 × 25 cm) in two intensive surveys carried out during austral summers of 2002–2003 and 2005–2006 (BENTART-03 and BENTART-06). Three different polychaete assemblages were determined from the classification and ordination analyses of sampling stations based on the Bray-Curtis similarity index. One group of stations encompassed the deep stations from the shelf of the Bellingshausen Sea, the second one the shallower stations from the same area and the third one those stations located near the coast of Peter I Island and Gerlache Strait, off the Antarctic Peninsula. The environmental variables involved in segregating these groups were several sedimentary features (redox potential, gravel content) and depth. The present study provides further support to previous ones that considered the shelf of the Bellingshausen Sea as a differentiated region within the Southern Ocean, clearly distinct to the adjacent Weddell and Scott Seas and the Antarctic Peninsula.  相似文献   

16.
Climate change and the marine ecosystem of the western Antarctic Peninsula   总被引:3,自引:0,他引:3  
The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.  相似文献   

17.
Disturbance has always shaped the evolution and ecology of organisms and nowhere is this more apparent that on the iceberg gouged continental shelves of the Antarctic Peninsula (AP). The vast majority of currently described polar biodiversity occurs on the Southern Ocean shelf but current and projected climate change is rapidly altering disturbance intensities in some regions. The AP is now amongst the fastest warming and changing regions on earth. Seasonal sea ice has decreased in time and extent, most glaciers in the region have retreated, a number of ice shelves have collapsed, and the surface waters of the seas west of the AP have warmed. Here, we review the influences of disturbance from ice, sedimentation, freshening events, wave action and humans on shallow water benthic assemblages, and suggest how disturbance pressures will change during the 21st century in the West Antarctic Peninsula (WAP) and Scotia Arc region. We suggest that the intensity of ice scouring will increase in the region over the next few decades as a result of decreased winter sea ice periods and increased ice loading into coastal waters. Thus, the most frequently disturbed environment on earth will become more so, which will lead to considerable changes in community structure and species distributions. However, as ice fronts retreat past their respective grounding lines, sedimentation and freshening events will become relatively more important. Human presence in the region is increasing, through research, tourism, and resource exploitation, which represents a considerable threat to polar biodiversity over the next century. Adapting to or tolerating multiple, changing environmental stressors will be difficult for a fauna with typically slow generation turnovers that has evolved largely in isolation. We suggest that intensifying acute and chronic disturbances are likely to cause significant changes in ecosystem structure, and probably a considerable loss of polar marine biodiversity, over relatively short timescales.  相似文献   

18.

Aim

We studied molecular eukaryotic biodiversity patterns in shallow hard-bottom Antarctic benthic communities using community DNA metabarcoding. Polar ecosystems are extremely exposed to climate change, and benthic macroinvertebrate communities have demonstrated rapid response to a range of natural and anthropogenic pressures. However, these rich and diverse ecosystems are poorly studied, revealing how little is known about the biodiversity of the Antarctic benthos associated with hard-bottom habitats.

Location

West Antarctic Peninsula and South Shetland Islands.

Methods

Using data collected in seven localities along the western Antarctic Peninsula, we calculated spatial patterns of alpha and beta diversities. Furthermore, we analysed temporal changes in benthic composition in one location (Deception Island) over 3 years. We calculated the temporal alpha and beta diversities to reveal changes in this community over time.

Results

We obtained a final list of 2057 molecular operational taxonomic units. We found significant differences in benthic community composition between localities and among years. Our dataset revealed a total of 10 different kingdom-level lineages and 34 different phyla in the samples. The most diverse phylum was Arthropoda, followed by Bacillariophyta, and Annelida, while the highest relative read abundances belonged to Annelida, Porifera and Echinodermata. Benthic community compositions changed between 2016 and 2018 in Deception Island, and decreasing species richness was the main component of temporal beta diversity.

Main Conclusions

Direct sampling methods are required for monitoring these complex communities. Informative biodiversity patterns can be retrieved even though most of the benthic biodiversity found in Antarctic habitats is yet to be taxonomically described and barcoded. Hard-bottom assemblages exhibit high spatial variability and heterogeneity, not related to depth, which represent a huge challenge for large-scale studies in the Southern Ocean. Local patchiness and structure within these communities are probably a consequence of a combination of several biotic and abiotic factors (i.e. ice disturbance, food supply and competition).  相似文献   

19.
The traditional view of Antarctica and the surrounding Southern Ocean as an isolated system is now being challenged by the recent discovery at the Antarctic Peninsula of adult spider crabs Hyas areneus from the North Atlantic and of larvae of subpolar marine invertebrates. These observations question whether the well described biogeographical similarities between the benthic fauna of the Antarctic Peninsula and the Magellan region of South America result from history (the two regions were once contiguous), or from a previously unrecognized low level of faunal exchange. Such exchange might be influenced by regional climate change, and also exacerbated by changes in human impact.  相似文献   

20.
Understanding regional‐scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid‐trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号