首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Intra-specific variation in sperm length influences male reproductive success in several species of insects. In males of the malaria vector Anopheles gambiae, sperm length is highly variable but the significance of this variation is unknown. Understanding what determines the reproductive success of male mosquitoes is critical for controlling malaria, and in particular for replacing natural populations with transgenic, malaria-resistant mosquitoes.

Methods

A laboratory population of A. gambiae males was tested for intra-specific variation in sperm length. A full-sib quantitative genetic design was used to test for a genetic component of sperm length in A. gambiae males and estimate its heritability. This study also tested for a relationship between sperm length and male reproductive success in A. gambiae. Male reproductive success was measured as the proportions of inseminated and ovipositing females.

Results

There was intra-specific variation of sperm length in A. gambiae. There was no significant genetic variation in sperm length and its heritability was low (h2 = 0.18) compared to other insects. Sperm length was correlated with male body size (measured as wing length). Males with short sperm had significantly higher reproductive success than males with long sperm and this was independent of body size.

Conclusion

This is the first study to demonstrate intra-specific variation in sperm length in A. gambiae and that males with short sperm have higher reproductive success. That sperm length influences female oviposition is important for any strategy considering the release of transgenic males.
  相似文献   

2.

Introduction

Lettuce (Lactuca sativa L.) is generally not specifically acknowledged for its taste and nutritional value, while its cultivation suffers from limited resistance against several pests and diseases. Such key traits are known to be largely dependent on the ability of varieties to produce specific phytochemicals.

Objectives

We aimed to identify promising genetic resources for the improvement of phytochemical composition of lettuce varieties.

Methods

Phytochemical variation was investigated using 150 Lactuca genebank accessions, comprising a core set of the lettuce gene pool, and resulting data were related to available phenotypic information.

Results

A hierarchical cluster analysis of the variation in relative abundance of 2026 phytochemicals, revealed by untargeted metabolic profiling, strongly resembled the known lettuce gene pool structure, indicating that the observed variation was to a large extent genetically determined. Many phytochemicals appeared species-specific, of which several are generally related to traits that are associated with plant health or nutritional value. For a large number of phytochemicals the relative abundance was either positively or negatively correlated with available phenotypic data on resistances against pests and diseases, indicating their potential role in plant resistance. Particularly the more primitive lettuces and the closely related wild relatives showed high levels of (poly)phenols and vitamin C, thus representing potential genetic resources for improving nutritional traits in modern crop types.

Conclusion

Our large-scale analysis of phytochemical variation is unprecedented in lettuce and demonstrated the ample availability of suitable genetic resources for the development of improved lettuce varieties with higher nutritional quality and more sustainable production.
  相似文献   

3.
4.

Background

Protein synthetic lethal genetic interactions are useful to define functional relationships between proteins and pathways. However, the molecular mechanism of synthetic lethal genetic interactions remains unclear.

Results

In this study we used the clusters of short polypeptide sequences, which are typically shorter than the classically defined protein domains, to characterize the functionalities of proteins. We developed a framework to identify significant short polypeptide clusters from yeast protein sequences, and then used these short polypeptide clusters as features to predict yeast synthetic lethal genetic interactions. The short polypeptide clusters based approach provides much higher coverage for predicting yeast synthetic lethal genetic interactions. Evaluation using experimental data sets showed that the short polypeptide clusters based approach is superior to the previous protein domain based one.

Conclusion

We were able to achieve higher performance in yeast synthetic lethal genetic interactions prediction using short polypeptide clusters as features. Our study suggests that the short polypeptide cluster may help better understand the functionalities of proteins.
  相似文献   

5.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

6.

Background

The protein encoded by the gene ybgI was chosen as a target for a structural genomics project emphasizing the relation of protein structure to function.

Results

The structure of the ybgI protein is a toroid composed of six polypeptide chains forming a trimer of dimers. Each polypeptide chain binds two metal ions on the inside of the toroid.

Conclusion

The toroidal structure is comparable to that of some proteins that are involved in DNA metabolism. The di-nuclear metal site could imply that the specific function of this protein is as a hydrolase-oxidase enzyme.
  相似文献   

7.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

8.

Introduction

The study of natural variation of metabolites brings valuable information on the physiological state of the organisms as well as their phenotypic traits. In marine organisms, metabolome variability has mostly been addressed through targeted studies on metabolites of ecological or pharmaceutical interest. However, comparative metabolomics has demonstrated its potential to address the overall and complex metabolic variability of organisms.

Objectives

In this study, the intraspecific (temporal and spatial) variability of two Mediterranean Haliclona sponges (H. fulva and H. mucosa) was investigated through an untargeted and then targeted metabolomics approach and further compared to their interspecific variability.

Methods

Samples of both species were collected monthly during 1 year in the coralligenous habitat of the Northwestern Mediterranean sae at Marseille and Nice. Their metabolomic profiles were obtained by UHPLC-QqToF analyses.

Results

Marked variations were noticed in April and May for both species including a decrease in Shannon’s diversity and concentration in specialized metabolites together with an increase in fatty acids and lyso-PAF like molecules. Spatial variations across different sampling sites could also be observed for both species, however in a lesser extent.

Conclusions

Synchronous metabolic changes possibly triggered by physiological factors like reproduction and/or environmental factors like an increase in the water temperature were highlighted for both Mediterranean Haliclona species inhabiting close habitats but displaying different biosynthetic pathways. Despite significative intraspecific variations, metabolomic variability remains minor when compared to interspecific variations for these congenerous species, therefore suggesting the predominance of genetic information of the holobiont in the observed metabolome.
  相似文献   

9.

Introduction

Modern omics experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis (ASCA) which allows interpretation of the variation induced by the different factors in a principal component analysis fashion. However, while in general only a subset of the measured variables may be related to the problem studied, all variables contribute to the final model and this may hamper interpretation.

Objectives

We introduce here a sparse implementation of ASCA termed group-wise ANOVA-simultaneous component analysis (GASCA) with the aim of obtaining models that are easier to interpret.

Methods

GASCA is based on the concept of group-wise sparsity introduced in group-wise principal components analysis where structure to impose sparsity is defined in terms of groups of correlated variables found in the correlation matrices calculated from the effect matrices.

Results

The GASCA model, containing only selected subsets of the original variables, is easier to interpret and describes relevant biological processes.

Conclusions

GASCA is applicable to any kind of omics data obtained through designed experiments such as, but not limited to, metabolomic, proteomic and gene expression data.
  相似文献   

10.

Objectives

To investigate the effects of operational process conditions on expression of MHC class II protein from a stable Drosophila S2 cell line.

Results

When the Drosophila S2 cells were grown in vented orbitally shaken TubeSpin bioreactor 600 containers, cell growth was improved three-fold and the yield of recombinant major histocompatibility (MHC) class II protein (HLA-DR12xHis) increased four-fold over the levels observed for the same cells cultivated in roller bottles (RB) without vented caps. Culturing in RB with vented caps while increasing the rotation speed from 6 rpm to 18 rpm also improved cell growth five-fold and protein productivity three-fold which is comparable to the levels observed in the orbitally shaken containers. Protein activity was found to be almost identical between the two vessel systems tested.

Conclusions

Optimized cell culture conditions and a more efficient vessel type can enhance gas transfer and mixing and lead to substantial improvement of recombinant product yields from S2 cells.
  相似文献   

11.

Background

Studies that ascertain families containing multiple relatives affected by disease can be useful for identification of causal, rare variants from next-generation sequencing data.

Results

We present the R package SimRVPedigree, which allows researchers to simulate pedigrees ascertained on the basis of multiple, affected relatives. By incorporating the ascertainment process in the simulation, SimRVPedigree allows researchers to better understand the within-family patterns of relationship amongst affected individuals and ages of disease onset.

Conclusions

Through simulation, we show that affected members of a family segregating a rare disease variant tend to be more numerous and cluster in relationships more closely than those for sporadic disease. We also show that the family ascertainment process can lead to apparent anticipation in the age of onset. Finally, we use simulation to gain insight into the limit on the proportion of ascertained families segregating a causal variant. SimRVPedigree should be useful to investigators seeking insight into the family-based study design through simulation.
  相似文献   

12.
13.

Objectives

Identification of novel microbial factors contributing to plant protection against abiotic stress.

Results

The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.

Conclusion

Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.
  相似文献   

14.

Background

Glaucoma is a leading cause of blindness in developed countries. Primary open-angle glaucoma (POAG), the most prevalent clinical subtype of glaucoma in the United States, affects African Americans at a higher rate compared with European Americans. Risk factors identified for POAG include increased age and family history, which coupled with heritability estimates, suggest this complex condition is associated with genetic and environmental factors. To date, several genome-wide studies have identified loci significantly associated with POAG risk, but most of these studies were performed in populations of European-descent.

Methods

To identify population-specific and trans-population genetic associations for POAG, we genotyped 11,521 African Americans using the Illumina Metabochip as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study accessing BioVU, the Vanderbilt University Medical Center’s biorepository linked to de-identified electronic health records. Among this study population, we identified 138 cases of POAG and 1376 controls and performed Metabochip-wide tests of association. We also estimated local genetic ancestry at CDKN2B-AS1, a POAG-associated locus established in European-descent populations.

Results

Overall, we did not identify significant single SNP-POAG associations after adjusting for multiple testing. We did, however, detect a significant association between POAG risk and local African genetic ancestry at CDKN2B-AS1, where on average cases were of 90% African descent compared with controls at 58% (p?=?2?×?10??6).

Conclusions

These data suggest that CDKN2B-AS1 is an important locus for POAG risk among African Americans, warranting further investigation to identify the variants underlying this association.
  相似文献   

15.

Objectives

With the view of designing a single biocatalyst for biorefining, carbazole dioxygenase was cloned from Pseudomonas sp. and expressed in Rhodococcus sp.

Results

The recombinant, IGTS8, degraded both carbazole and dibenzothiophene at 400 mg/l in 24 h. Maximum carbazole degradation was in 1:1 (v/v) hexadecane/aqueous phase. Anthracene, phenanthrene, pyrene, fluoranthene and fluorine were also degraded without affecting the aliphatic component.

Conclusions

Recombinant Rhodococcus sp. IGTS8 can function as a single biocatalyst for removing major contaminants of fossil fuels viz. dibenzothiophene, carbazole and polyaromatic compounds.
  相似文献   

16.
17.

Background

The sorting nexin (SNX) family is involved in endocytosis and protein trafficking and plays multiple roles in various diseases. The role of SNX proteins in Kawasaki disease (KD) is not known. We attempted to test whether genetic SNX variation associates with the risk of coronary artery aneurysm (CAA) formation in KD.

Methods and results

Chi-square tests were used to identify SNX24 genetic variants associated with KD susceptibility and CAA formation in KD; models were adjusted for fever duration and time of first administration of intravenous immunoglobulin. We obtained clinical characteristics and genotypes from KD patients (76 with CAA and 186 without CAA) in a population-based retrospective KD cohort study (n?=?262). Clinical and genetic factors were associated with CAA formation in KD. In addition, endothelial cell inflammation was evaluated. Significant correlation was observed between KD with CAA complications and the rs28891 single-nucleotide polymorphism in SNX24. Patients with CC?+?CT genotypes had lesser CAA complications. In lipopolysaccharide-treated human umbilical vein endothelial cells, siRNA knockdown of SNX24 significantly decreased gene expression of the proinflammatory cytokines IL-1 beta, IL-6, and IL-8.

Conclusions

Polymorphisms in SNX24 may be used as genetic markers for the diagnosis and prognosis of CAA formation in KD.
  相似文献   

18.

Introduction

Citrate is an old metabolite which is best known for the role in the Krebs cycle. Citrate is widely used in many branches of medicine. In ophthalmology citrate is considered as a therapeutic agent and an useful diagnostic tool—biomarker.

Objectives

To summarize the published literature on citrate usage in the leading causes of blindness and highlight the new possibilities for this old metabolite.

Methods

We conducted a systematic search of the scientific literature about citrate usage in ophthalmology up to January 2018. The reference lists of identified articles were searched for providing in-depth information.

Results

This systematic review included 30 articles. The role of citrate in the leading causes of blindness is presented.

Conclusions

Citrate might help inhibit cataract progression, in case of questions confirm glaucoma diagnosis or improve cornea repair treatment as adjuvant agent (therapy of ulcerating cornea after alkali injury, crosslinking procedure). However, the knowledge about possible citrate usage in ophthalmology is not widely known. Promoting recent scientific knowledge about citrate usage in ophthalmology may not only benefit of medical improvement but may also limit economic costs caused by leading causes of blindness. Further studies on citrate usage in ophthalmology should continuously be the field of scientific interest.
  相似文献   

19.

Background

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb). This disease with two million deaths per year has the highest mortality rate among bacterial infections. The only available vaccine against TB is BCG vaccine. BCG is an effective vaccine against TB in childhood, however, due to some limitations, has not proper efficiency in adults. Also, BCG cannot produce an adequately protective response against reactivation of latent infections.

Objective

In the present study we will review the most recent findings about contribution of HspX protein in the vaccines against tuberculosis.

Methods

Therefore, many attempts have been made to improve BCG or to find its replacement. Most of the subunit vaccines for TB in various phases of clinical trials were constructed as prophylactic vaccines using Mtb proteins expressed in the replicating stage. These vaccines might prevent active TB but not reactivation of latent tuberculosis infection (LTBI). A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of HspX protein in tuberculosis vaccines.

Results

Ideal subunit post-exposure vaccines should target all forms of TB infection, including active symptomatic and dormant (latent) asymptomatic forms. Among these subunit vaccines, HspX is the most important latent phase antigen of M. tuberculosis with a strong immunological response. There are many studies that have evaluated the immunogenicity of this protein to improve TB vaccine.

Conclusion

According to the studies, HspX protein is a good candidate for development of subunit vaccines against TB infection.
  相似文献   

20.

Introduction

A common problem in metabolomics data analysis is the existence of a substantial number of missing values, which can complicate, bias, or even prevent certain downstream analyses. One of the most widely-used solutions to this problem is imputation of missing values using a k-nearest neighbors (kNN) algorithm to estimate missing metabolite abundances. kNN implicitly assumes that missing values are uniformly distributed at random in the dataset, but this is typically not true in metabolomics, where many values are missing because they are below the limit of detection of the analytical instrumentation.

Objectives

Here, we explore the impact of nonuniformly distributed missing values (missing not at random, or MNAR) on imputation performance. We present a new model for generating synthetic missing data and a new algorithm, No-Skip kNN (NS-kNN), that accounts for MNAR values to provide more accurate imputations.

Methods

We compare the imputation errors of the original kNN algorithm using two distance metrics, NS-kNN, and a recently developed algorithm KNN-TN, when applied to multiple experimental datasets with different types and levels of missing data.

Results

Our results show that NS-kNN typically outperforms kNN when at least 20–30% of missing values in a dataset are MNAR. NS-kNN also has lower imputation errors than KNN-TN on realistic datasets when at least 50% of missing values are MNAR.

Conclusion

Accounting for the nonuniform distribution of missing values in metabolomics data can significantly improve the results of imputation algorithms. The NS-kNN method imputes missing metabolomics data more accurately than existing kNN-based approaches when used on realistic datasets.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号