首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng XC  Li WX  Peng F  Zhu ZH 《IUBMB life》2000,49(3):207-210
Based on the amino acid sequence of a bradykinin-potentiating peptide (Bpp) (peptide K-12) from scorpion Buthus occitanus, a full-length cDNA sequence encoding the precursor of a novel venom peptide (named BmKbpp) related to this Bpp, has been isolated and analyzed. The cDNA encodes a precursor of 72 amino acid residues, including a signal peptide of 22 residues and an extra Arg-Arg-Arg tail at the C-terminal end of the precursor, which have to be removed in the processing step. The C-terminal region (21 residues) of the precursor is homologous (57% identical) with the sequence of peptide K-12. Thus, according to the primary structure of the BmKbpp precursor, there may be a propeptide between the signal peptide and the putative mature BmKbpp at the C-terminal region of the precursor.  相似文献   

2.
Zeng XC  Wang SX  Zhu Y  Zhu SY  Li WX 《Peptides》2004,25(2):143-150
The scorpion venom peptides with no disulfide bridge are rarely identified and poorly characterized so far. Here, we report the identification and characterization of four novel disulfide-bridge-free venom peptides (BmKa1, BmKa2, BmKb1 and BmKn2) from Buthus martensii Kasch. BmKa1 and BmKa2 are very acidic and hydrophilic, showing no any similarity to other proteins, whereas BmKb1 and BmKn2 both are basic, alpha-helical peptide with an amidated C-terminus, showing a little homology with other peptides. Functional tests with synthetic peptide showed that BmKn2 has strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, whereas BmKb1 has weak activity in inhibiting the growth of these bacteria.  相似文献   

3.
Scorpion venoms contain a large number of small peptides with diverse primary structures and unique pharmacological functions. From a cDNA library prepared from venom glands of the Chinese scorpion Buthus martensii Karsch, clones encoding precursors of three unique cysteine-rich peptides named BmTXKS3, BmTXLP2 and BmAP1 have been isolated and sequenced. These precursors are composed of 54, 94 and 89 amino acids, respectively, containing a signal peptide in their N-termini. Sequence analysis shows that BmTXKS3 and BmTXLP2 are two novel members of a scorpion toxin family sharing cysteine-stabilized α-helical folds. BmAP1 possesses a distinctive cystine framework, which is similar to some serine protease inhibitors and the segments of several extracellular proteins.  相似文献   

4.
From the venom of scorpion Buthus martensii Karsch,a short peptide (BmP01, 29 amino acid residues) was isolated and characterized as previously reported (Lebren, R. R., et al. (1997) Eur. J. Biochem. 245, 457-464). It was shown to reduce 33% outward K(+) channel (hippocampal neurons) currents at 10 microM. The solution structure of BmP01 was determined by 2D (1)H NMR spectroscopy. The NOEs, coupling constants, and H-D exchange obtained from NMR spectroscopy were used in structural calculations. The conformation of BmP01 is composed of a short alpha-helix (Cys 3-Thr 12) and a two-stranded antiparallel beta-sheet (Ala 15-Asp 20 and Lys 23-Pro 28). There are three disulfide bridges (Cys 3-Cys 19, Cys 6-Cys 24 and Cys 10-Cys 26) connecting the alpha-helix and beta-sheet. Asp 20 to Lys 23 form a type II turn linking the two strands. Structural and electrostatic potential comparison between BmP01 and its analogues are also presented.  相似文献   

5.
An anti-epilepsy peptide (AEP) was isolated and purified from venom of the scorpion Buthus martensii Karsch. The purification procedure included CM-Sephadex C-50 chromatography, gel filtration on Sephadex G-50 and DEAE-Sephadex A-50 chromatography. Its homogeneity was demonstrated by pH 4.3 polyacrylamide-disc-gel electrophoresis, focusing electrophoresis and SDS/polyacrylamide-disc-gel electrophoresis. The Mr of this peptide, calculated from measurements in SDS/15%-polyacrylamide-disc-gel and SDS/20%-polyacrylamide-disc-gel electrophoresis, is 8300. The isoelectric point is 8.52 by pH 8-9.5-range isoelectric focusing. No haemorrhagic or toxic activities were found. No toxicity was found even after the dose reached 28 mg/kg. The pharmacological tests showed that the AEP had no effect on heart rate, blood pressure or electrocardiogram, but strongly inhibited epilepsy induced by coriaria lactone and cephaloridine. The fluorescence spectrum showed that the peptide has a strong emission peak at 337 nm. Amino acid analysis suggested that the AEP is composed of 66 residues from 18 amino acids and has an Mr of 8290. The sequence of the first 50 N-terminal residues is as follows: Asp-Gly-Tyr-Ile-Arg-Gly-Ser-Asp-Asn-Cys-Lys-Val-Ser-Cys-Leu-Leu-Gly-Asn- Glu-Gly - Cys-Asn-Lys-Glu-Cys-Arg-Ala-Tyr-Gly-Ala-Ser-Tyr-Gly-Tyr-Cys-Trp-Thr-Val- Lys-Leu - Ala-Gln-Asp-Cys-Glu-Gly-Leu-Pro-Asp-Thr-.  相似文献   

6.
7.
A new peptide named BmK dITAP3 from scorpion Buthus martensii Karsch (BmK) has been identified to possess a dual bioactivity, a depressant neurotoxicity on insects and an analgesic effect on mice. The bioassays also showed that the peptide was definitely devoid of the neurotoxicity on mammals, which indicated that the analgesic effect of BmK dITAP3 could not be ascribed to the syndromic effects of a mammalian neurotoxicity. BmK dITAP3 exhibited 43.0% inhibition efficiency of the analgesic effect on mice at a dose of 5 mg/kg and the FPU value of 0.5 microg/body (approximately 30 mg) on the fly larvae. The pI value and the molecular mass determined by MALDI-TOF MS for dITAP3 were 6.5 and 6722.7, respectively. Its first 15 N-terminal residues were determined by Edman degradation, based on which the full amino acid sequence was deduced from the cDNA sequence encoding the peptide with 3'-RACE. Circular dichroism and sequence based prediction analyses showed dITAP3 may have a similar molecular scaffold as the most scorpion toxins but with features of the more beta structures and much less of alpha helix. The details of the purification, characterization and sequencing as well as the sequence comparison with other depressant insect toxins and the correlation between the analgesic effect and the insect toxicity will be reported and discussed, respectively.  相似文献   

8.
An antitumor peptide (ANTP) was isolated and purified from the venom of the Chinese scorpion Buthus martensii Karsch. The purification procedure included gel filtration on Sephadex G-50 and Superdex 30 high resolution chromatography, Phenyl Sepharose 6 Fast Flow chromatography, and SP-Sepharose Fast Flow chromatography. Its homogeneity was demonstrated by size exclusion HPLC on TSK G2000 SW. The isoelectric point is more than 10 by pH 3-10 range isoelectric focusing. ANTP has a relative molecular mass of 6280, calculated from the measurement of 16.5% SDS-PAGE. The pharmacological tests showed that ANTP has antitumoral effects in the mouse S-180 fibrosarcoma model and Ehrlich ascites tumor model. Amino acid analysis suggested the ANTP is rich in glycine and does not have histidine and threonine. The sequence of the first 25 N-terminal residues is as follows: Val-Arg-Asp-Gly-Tyr-Ile-Ala-Asp-Asp-Lys-Asn-Cys-Ala-Tyr-Phe-Cys-Gly-Arg-Asn-Ala-Tyr-Cys-Asp-Asp-Glu.  相似文献   

9.
Tong X  Zhu J  Ma Y  Chen X  Wu G  He F  Cao C  Wu H 《Biochemistry》2007,46(40):11322-11330
The solution structure of an alpha-insect toxin from Buthus martensii Karsch, BmKalphaIT01, has been determined by two-dimensional NMR spectroscopy and molecular modeling techniques. Combining the sequence homology comparison and toxicity bioassays, BmKalphaIT01 has been suggested to be a natural mutant of alpha-insect toxins and so can serve as a tool to study the relationship of structure-function among this group of toxins. The overall structure of BmKalphaIT01 shares a common core structure consisting of an alpha-helix packed against a three-stranded antiparallel beta-sheet, which exhibits distinctive local conformations within the loops connecting these secondary structure elements. The solution structure of BmKalphaIT01 features a non-proline cis peptide bond between Asn9 and Tyr10, which is proposed to mediate the spatial closing of the five-residue turn (Gln8-Cys12) and the C-terminal segment (Arg58-His64) to form the NC domain and confer the toxin insect-specific bioactivity. Conformational heterogeneity is observed in the solution of BmKalphaIT01 and could be attributed to the cis-trans isomerization of the peptide bond between residues 9 and 10. The minor conformation of BmKalphaIT01 with a trans peptide bond between Asn9 and Tyr10 may be responsible for its moderate bioactivity against mammals. The cis-trans isomerization of the peptide bond between residues 9 and 10 may be the structural basis of dual pharmacological activities of alpha-insect and alpha-like scorpion toxins, which is supported by the fact that conformational heterogeneity occurs in the solution structures of LqhalphaIT, LqqIII, and LqhIII and by comparison of the solution structure of BmKalphaIT01 with those of some relevant alpha-type toxins.  相似文献   

10.
In this study an analgesic peptide was purified through five continuous chromatographic steps. The mouse twisting model test was used to identify the target peptides in every separation step. The purified BmK AGP-SYPU2 was further qualified by Reverse Phase-High Performance Liquid Chromatography and High Performance Capillary Electrophoresis. The molecular weight, isoelectric point, and N-terminal sequence of the purified peptide were determined. Based on the N-terminal sequence, the cDNA was cloned by rapid amplification of the cDNA ends from the cDNA pool of scorpion glands. Sequence determination showed that the mature BmK AGP-SYPU2 peptide is composed of 66 amino acid residues, and BmK AGP-SYPU2 is identical to BmK alpha2 (GenBank Acc. No. AF288608) and BmK alphaTX11 (GenBank Acc. No. AF155364). We report herein a purification procedure that yields substantial amounts of natural BmK AGP-SYPU2 with high analgesic activity.  相似文献   

11.
Five analogs of a natural peptide (BmKn1) found in the venom of scorpion Buthus martensii Karsh have been synthesized and tested to compare their antimicrobial and hemolytic activity with the wild type. Circular dichroism spectra show that these peptides form an alpha helix structure and its amino acid positions predict an amphipathic nature. Results show that increasing hydrophobicity by substituting successively positions 5 and 9 of the sequence (on the hydrophobic side of the helix) with alanine, valine and leucine enhances antimicrobial activity and hemolysis. When changes are done on positions 7 and 10 (on the hydrophilic side) by introducing more positive charges with addition of lysine, both activities also increase. However, when negative charges are introduced instead (with glutamic acids), antimicrobial activity is observed but hemolysis is reduced to zero under the concentrations studied. Although strong inhibitory activity begins at low concentrations (10 μg/mL), some peptides level off inhibition and no change is observed as concentrations are increased.  相似文献   

12.
The gene encoding a putative mature antitumor-analgesic peptide (AGAP) from the venom of the Chinese scorpion Buthus martensii Karsch was obtained by polymerase chain reaction (PCR) according to its cDNA sequence and expressed in Escherichia coli. While most of the recombinant AGAP was expressed in the form of insoluble inclusion body. The recombinant AGAP was purified to homogeneity by metal chelating affinity chromatography. Pharmaceutical tests showed that the recombinant AGAP has both analgesic and antitumor activities on mice.  相似文献   

13.
The potassium channel Kv1.3 is an attractive pharmacological target for T-cell-mediated autoimmune diseases, and specific and selective peptidic blockers of Kv1.3 channels have served as valuable therapeutic leads for treating these diseases. Here, we found a new peptide toxin, J123, with 43 amino acids including six cysteine residues by screening the venomous cDNA library of scorpion Buthus martensii Karsch, which has been used as traditional medicine in China for more than 2000 years. The sequence analysis suggested that peptide J123 constituted a new member of the alpha-KTx toxins. The electrophysiological experiments further indicated that peptide J123 has a novel pharmacological profiles: it blocked Kv1.3 channel with high potency (IC(50)=0.79nM), and exhibited good selectivity on Kv1.3 over Kv1.1 (>1000-fold) and Kv1.2 (about 30-fold), respectively. Furthermore, peptide J123 had no activity on SKCa2 and SKCa3 channels at micromolar concentration level. Based on the pharmacological activities, the possible channel-interacting surface of peptide J123 was also predicted by molecular modeling and docking. All these data not only enrich the knowledge of the structure-function relationship of the new Kv1.3-speicific peptide but also present a potential drug candidate for selectively targeting Kv1.3 channels.  相似文献   

14.
15.
For a long time Asian scorpion Buthus martensi Karsch (BmK) has been used in Chinese traditional medicine to cure many diseases of nervous system. Here we report the purification and characterization of a pharmacologically active neurotoxin from the scorpion BmK. This toxin had little toxicity in mice and insects but was found to have an anti-epilepsy effect in rats, and is thus named as BmK anti-epilepsy peptide (BmK AEP). Its amino-acid sequence was determined by lysylendopeptidase digestion, Edman degradation and mass spectrographic analysis. Based on the determined sequence, the gene coding for this peptide was also cloned and sequenced by the 3' and 5' RACE methods. It encodes a precursor of 85 amino-acid residues including a signal peptide of 21 residues, a mature peptide of 61 residues and three additional residues Gly-Lys-Lys at the C-terminus. The additional Gly sometimes followed by one or two basic residues is prerequisite for the amidation of its C-terminus. C-terminal amidation was also verified by the molecular-mass determination of BmK AEP. This anti-epilepsy peptide toxin shares homology with other depressant insect toxins. The remarkable difference between them was mainly focused at residues 6, 7 and 39; these residues might relate to the unique action of BmK AEP.  相似文献   

16.
The cDNA of BmK IT-AP, an excitatory insect toxin from the scorpion Buthus martensi Karsch that has an analgesic effect on mammalian cells, was expressed in E. coli in the form of an inclusion body. Following denaturation and reduction, the recombinant protein was renatured and purified by liquid chromatography. The authenticity of the recombinant product was confirmed by bioassay and its electrophysiological effect on insect sodium channel.  相似文献   

17.
Two disulfide-rich, low-molecular mass peptides (approximately 3 kDa and approximately 4 kDa) have been isolated from Buthus sindicus venom using ion-exchange and reverse-phase HPLC. Peptide I has 35 residues with 8 half-cystine residues and is clearly related to four-disulfide core proteins of the neurophysin type and to toxins of other scorpion species (55-63% residue identity). Peptide II, present in low yield, has 28 residues with 6 half-cystine residues and a structure largely dissimilar from that of peptide I and other characterized toxins, although probably still a member of the disulfide core peptide type. Consequently, scorpion venom contains, in addition to toxins characterized before, toxin-like compounds with distant relationships.  相似文献   

18.
BmK AngM1 is an analgesic peptide from the venom of Buthus martensii Karsch (BmK). The synthetic gene encoding BmK AngM1 was optimized on the basis of its cDNA sequence and the codon usage preference of Pichia pastoris. The codon-optimized gene was cloned into pPIC9K and then transformed into P. pastoris. SDS-PAGE and Western blot analysis showed that the recombinant BmK AngM1 (rBmK AngM1) was expressed by the addition of methanol to the medium, and its maximum production reached above 500 mg/l. The purified rBmK AngM1 could be obtained efficiently by Nickel affinity chromatography. Analgesic bioassay, by the mouse-twisting model, showed that rBmK AngM1 had evident analgesic effect with an ED50 of 0.5 mg/kg.  相似文献   

19.
Luo F  Zeng XC  Hahin R  Cao ZJ  Liu H  Li WX 《Peptides》2005,26(12):2427-2433
At least 25 nondisulfide-bridged peptides (NDBPs) have been identified and characterized from scorpions. However, the genomic organization of the genes that encode these peptides have not been reported yet. BmKa1, BmKa2 and BmKb1 are three novel genes that code for NDBPs identified by our group from Mesobuthus martensii Karsch. Based on their cDNA sequences, the genomic DNA sequences encoding these peptides were obtained using the PCR method. Sequence analysis showed that three distinct genomic structural patterns are used to encode these three peptides. The BmKa1 gene is not interrupted by any introns. However, the BmKa2 gene is composed of two exons, interrupted by a 67 bp intron that is located in the DNA region encoding the mature peptide. Two genomic homologues of the BmKb1 cDNA sequence, named BmKb1′ and BmKb2, respectively, were obtained. The BmKb1′ gene contains one intron of 593 bp, inserted into the DNA region that encodes the signal peptide. Similarly, the BmKb2 gene also contains an intron that interrupts the exon that encodes the NDBP signal peptide. The amino acid sequences deduced for BmKb2 and BmKb1′ differ only at one position. The data suggest that the genomic organizational pattern of NDBPs displays more divergence than that exhibited by the genes that encode disulfide-bridged peptides from scorpions.  相似文献   

20.
Zeng XC  Luo F  Li WX 《Peptides》2006,27(7):1745-1754
Scorpion venom is composed of a large repertoire of biologically active polypeptides. However, most of these peptides remain to be identified and characterized. In this paper, we report the identification and characterization of four novel disulfide-bridged venom peptides (named BmKBTx, BmKITx, BmKKx1 and BmKKx2, respectively) from the Chinese scorpion, Mesobuthus martensii (also named Buthus martensii Karsch). BmKBTx is composed of 58 amino acid residues and cross-linked by three disulfide bridges. The sequence of BmKBTx shows some similarities to that of the toxin, birtoxin, and its analogs. It is likely that BmKBTx is a beta-toxin active on Na+ channels, which is toxic to either insects or mammals. BmKITx is composed of 71 amino acid residues with four disulfide bridges. It is the longest venom peptide identified from M. martensii so far. BmKITx shows little sequence identity with scorpion alpha-toxins toxic to insects. It is likely that BmKITx is a new type of Na+ -channel specific toxin active on both insects and mammals. BmKKx1 contains 38 amino acid residues cross-linked by three disulfide bridges and shows 84% sequence identity with BmTx3, an inhibitor of A-type K+ channel and HERG currents. BmKKx1 has been classified as alpha-KTx-15.8. BmKKx2 is composed of 36 residues and stabilized by three disulfide bridges. BmKKx2 is a new member of the gamma-K+ -channel toxin subfamily (classified as gamma-KTx 2.2). The venoms of scorpions thus continue to provide novel toxins with potential novel actions on targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号