首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used human apolipoprotein cDNAs as hybridization probes to study the relative abundance and distribution of apolipoprotein mRNAs in rabbit tissues by RNA blotting analysis. The tissues surveyed included liver, intestine, lung, pancreas, spleen, stomach, skeletal muscle, testis, heart, kidney, adrenal, aorta, and brain. We found that liver is the sole or major site of synthesis of apoA-II, apoA-IV, apoB, apoC-I, apoC-II, apoC-III, and apoE, and the intestine is a major site of synthesis of apoA-I, apoA-IV, and apoB. Minor sites of apolipoprotein mRNA synthesis were as follows: apoA-I, liver and skeletal muscle; apoA-IV, spleen and lung; apoB, kidney; apoC-II and apoC-III, intestine. ApoE mRNA was detected in all tissues surveyed with the exception of skeletal muscle. Sites with moderate apoE mRNA (10% of the liver value) were lung, brain, spleen, stomach, and testis. All rabbit mRNAs had forms with sizes comparable to their human counterparts. In addition, hybridization of hepatic and intestinal RNA with human apoA-IV and apoB probes produced a second hybridization band of approximately 2.4 and 8 kb, respectively. Similarly, hybridization of rabbit intestinal RNA with human apoC-II produced a hybridization band of 1.8 kb. The 8 kb apoB mRNA form may correspond to the apoB-48 mRNA, whereas the apoA-IV- and apoC-II-related mRNA species have not been described previously. This study provides a comprehensive survey of the sites of apolipoprotein gene expression and shows numerous differences in both the abundance and the tissue distribution of several apolipoprotein mRNAs between rabbit and human tissues. These findings and the observation of potentially new apolipoprotein mRNA species are important for our understanding of the cis and trans acting factors that confer tissue specificity as well as factors that regulate the expression of apolipoprotein genes in different mammalian species.  相似文献   

2.
We describe here a detailed analysis of the methylation patterns of the apoC-III and apoA-IV genes in adult and embryonic tissues. Together with previously reported data on the human apoA-I gene (4), the results presented here constitute a comprehensive study on the methylation pattern of the apoA-I/C-III/A-IV gene cluster. The two genes (apoC-III and apoA-IV) display tissue-specific methylation patterns that correlate with their activity. This gene-specific methylation pattern indicates that the apoA-I/C-III/A-IV gene cluster is not one entity with respect to methylation. The cluster is almost entirely methylated in tissues that do not express any of the genes; however, individual gene regions are unmethylated in the tissue of expression. A comparison of the observed methylation patterns in adult tissues with those in embryonic tissues suggests that the mature tissue-specific methylation patterns are a result of an interplay between demethylation and de novo methylation events in the embryo. These changes in DNA methylation include demethylation in the early embryo followed by de novo methylation at later stages. A second round of tissue-specific demethylation and methylation de novo occurs in the late embryo as well. Evidence presented here supports the idea that CpG islands are protected in general from methylation de novo by a built-in signal and not by CpG density per se.  相似文献   

3.
The defect in a kindred with marked plasma high density lipoprotein (HDL) deficiency and premature atherosclerosis was examined. The homozygous proband died of coronary artery atherosclerosis at age 45 and had undetectable levels of plasma apolipoproteins A-I and C-III, proteins of HDL. In family studies 10 heterozygotes were identified whose mean apoA-I, apoC-III, apoA-IV, and HDL cholesterol levels were 67, 57, 65, and 62% of normal. These subjects were noted to have restriction fragment length polymorphisms following DNA digestion with a number of enzymes including BamHI, EcoRI, HindIII, XmnI, PstI, and PvuII, following hybridization with a probe spanning 1.1 kilobases approximately 2.5 kilobases 5' to the apoA-I gene. Cloning and sequence analysis of the abnormal allele indicated that the defect is due to the complete deletion of the apoA-I, -C-III, and -A-IV gene complex on chromosome 11, with both ends of the deletion being located in areas of highly repetitive DNA. The data support the concept of an independent role for HDL in the pathogenesis of atherosclerosis.  相似文献   

4.
5.
6.
Recently developed molecular probes for human apolipoprotein (apo) genes have been used to study the specificity of human tissue expression of the apo A-I, apo C-II, apo C-III, and apo E genes. We have found that apo E mRNA was present in all tissues examined. On the basis of total RNA concentration the relative abundance of apo E mRNA expressed as a percentage of the liver value is as follows: adrenal gland and macrophages, 74-100%; gonads and kidney, 12-15%; spleen, brain, thymus, ovaries, intestine, and pancreas, 3-9%; heart, 1.5%; stomach, striated muscle, and lung, less than 1%. The relative concentration of apo E mRNA in cultures of human peripheral blood monocyte-macrophages increases dramatically as a function of time in culture, and after 5 days, it compares to that of liver. The human tissues shown to synthesize apo E mRNA were also examined for their ability to synthesize apo A-I, apo C-II, and apo C-III mRNA. The relative abundance of apo A-I, apo C-III, and apo C-II mRNA expressed as a percentage of the liver value is as follows: apo A-I, intestine, 50%; apo A-I, pancreas and gonads, 12%; apo A-I, kidney, 4%; apo A-I, adrenal, 2.5%; apo A-I, ovaries and heart, 1%; apo A-I, stomach and thymus, less than 1%; apo C-III, intestine, 62%; apo C-III, pancreas, 7%; apo C-II, intestine, 3%; apo C-II, pancreas, less than 1%. The knowledge of tissue specificities in the synthesis of apolipoproteins is important for our understanding of the regulation of apolipoproteins and lipoprotein metabolism.  相似文献   

7.
8.
Apolipoprotein (apo) A-I is a major protein of high density lipoproteins (HDL). The gene for apoA-I has been localized to the p11 leads to q13 region of chromosome 11 by filter hybridization analysis of mouse-human hybrid cell cDNAs containing chromosome 11 translocations utilizing a cloned human apoA-I cDNA probe. The known linkage of apoA-I and apoC-III also permitted the simultaneous assignment of the apoC-III gene to the same region on chromosome 11. Comparison with previously established gene linkages on the mouse and human genome suggests that apoA-I + apoC-III may be linked to the esterase A4 and uroporphyrinogen synthase genes which are present on the long arm of human chromosome 11. The localization of the apoA-I + apoC-III genes in the p11----q13 region of chromosome 11 represents a definitive chromosomal assignment of a human apolipoprotein gene, and will now enable more detailed analysis of the geneomic organization and linkages of the apolipoprotein genes.  相似文献   

9.
Structure and interfacial properties of chicken apolipoprotein A-IV   总被引:3,自引:0,他引:3  
To gain insight into the evolution and function of apolipoprotein A-IV (apoA-IV) we compared structural and interfacial properties of chicken apoA-IV, human apoA-IV, and a recombinant human apoA-IV truncation mutant lacking the carboxyl terminus. Circular dichroism thermal denaturation studies revealed that the thermodynamic stability of the alpha-helical structure in chicken apoA-IV (DeltaH = 71.0 kcal/mol) was greater than that of human apoA-IV (63.6 kcal/mol), but similar to that of human apoA-I (73.1 kcal/mol). Fluorescence chemical denaturation studies revealed a multiphasic red shift with a 65% increase in relative quantum yield that preceded loss of alpha-helical structure, a phenomenon previously noted for human apoA-IV. The elastic modulus of chicken apoA-IV at the air/water interface was 13.7 mN/m, versus 21.7 mN/m for human apoA-IV and 7.6 mN/m for apoA-I. The interfacial exclusion pressure of chicken apoA-IV for phospholipid monolayers was 31.1 mN/m, versus 33.0 mN/m for human A-I and 28.5 mN/m for apoA-IV.We conclude that the secondary structural features of chicken apoA-IV more closely resemble those of human apoA-I, which may reflect the evolution of apoA-IV by intraexonic duplication of the apoA-I gene. However, the interfacial properties of chicken apoA-IV are intermediate between those of human apoA-I and apoA-IV, which suggests that chicken apoA-IV may represent an ancestral prototype of mammalian apoA-IV, which subsequently underwent further structural change as an evolutionary response to the requisites of mammalian lipoprotein metabolism.  相似文献   

10.
11.
In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4alpha and gamma. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4alpha repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4alpha and gamma functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.  相似文献   

12.
We have recently reported that the human apolipoprotein A-I (apoA-I) and apolipoprotein C-III (apoC-III) genes are physically linked and that the presence of a DNA insertion in the apoA-I gene is correlated with apoA-I-apoC-III deficiency in patients with premature atherosclerosis. In addition, the presence of a polymorphic restriction endonuclease site (SacI) in the 3' noncoding region of apoC-III mRNA has been correlated with hypertriglyceridemia in humans. In this study, we report the isolation and characterization of cDNA clones containing the entire apoC-III mRNA coding sequence. The nucleotide-derived apoC-III amino acid sequence indicates that the apoC-III primary translational product contains a 20 amino acid N-terminal extension, which conforms with the general properties of known signal peptides, and is highly homologous to the recently reported rat apoC-III signal peptide. The DNA-derived apoC-III amino acid sequence differs from the previously reported apoC-III amino acid sequence at four amino acid residues. More specifically, at positions +32, +33, +37, +39, the DNA sequence predicts Glu, Ser, Gln, Ala, respectively, while the previously reported sequence specifies Ser, Gln, Ala, Gln, respectively. Finally, isolation and characterization of apoC-III cDNA clones, with or without the polymorphic SacI restriction site, indicated that the apoC-III nucleotide sequence corresponding to the Sac+ and Sac- clones differs at three nucleotide sites; however, the amino acid sequence specified by the Sac+ and Sac- alleles is identical.  相似文献   

13.
There is growing evidence of the capacity of vitamin A to regulate the expression of the genetic region that encodes apolipoproteins (apo) A-I, C-III, and A-IV. This region in turn has been proposed to modulate the expression of hyperlipidemia in the commonest genetic form of dyslipidemia, familial combined hyperlipidemia (FCHL). The hypothesis tested here was whether vitamin A (retinol), by controlling the expression of the AI-CIII-AIV gene cluster, plays a role in modulating the hyperlipidemic phenotype in FCHL. We approached the subject by studying three genetic variants of this region: a C1100-T transition in exon 3 of the apoC-III gene, a G3206-T transversion in exon 4 of the apoC-III gene, and a G-75-A substitution in the promoter region of the apoA-I gene. The association between plasma vitamin A concentrations and differences in the plasma concentrations of apolipoproteins A-I and C-III based on the different genotypes was assessed in 48 FCHL patients and 74 of their normolipidemic relatives. The results indicated that the subjects carrying genetic variants associated with increased concentrations of apoA-I and C-III (C1100-T and G-75-A) also presented increased plasma concentrations of vitamin A. This was only observed among the FCHL patients, which suggested that certain characteristics of these patients contributed to this association. The G3206-T was not associated with changes in either apolipoprotein concentrations or in vitamin A.In summary, we report a relationship between genetically determined elevations of proteins of the AI-CIII-AIV gene cluster and vitamin A in FCHL patients. More studies will be needed to confirm that vitamin A plays a role in FCHL which might also be important for its potential application to therapeutical approaches.  相似文献   

14.
The levels of apolipoprotein A-IV (apoA-IV) mRNA are regulated by dietary lipid in the liver of both the mouse and rat. Thirteen different inbred mouse strains were fed a high lipid diet, and the effect on apoA-IV liver mRNA levels was examined. It was found that each strain responded in one of two ways. Mice of four strains had higher liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Mice of the other nine strains had decreased liver apoA-IV mRNA levels as compared with syngeneic mice fed a normal chow diet. Using F1 hybrids between mice from BALB/c, C3H, and C57BL/6 and between 129 and C57BL/6, as well as recombinant inbred strains derived from a cross between BALB/c and C57BL/6, we have shown that both the normal level of liver apoA-IV mRNA in the chow-fed mice and the lipid-dependent regulation of apoA-IV mRNA levels are controlled by cis-acting genetic elements. The apoA-IV mRNA levels in mice fed a normal diet varied dramatically among strains, with the largest difference (90-fold) being between the 129/J inbred strain and the C57BL/6J strain. In addition, we have examined the expression of apoA-IV during mouse development. ApoA-IV mRNA is expressed early in mouse liver (16 days postcoitum), whereas others have shown previously that rat liver apoA-IV mRNA is undetectable until 14 days after birth. ApoA-IV mRNA levels in the intestine and apoA-I mRNA levels in the liver and intestine, by contrast, mirror the pattern seen in the rat.  相似文献   

15.
We have determined the nucleotide sequence of the rat apolipoprotein (apo-) A-IV gene and analyzed its structural and evolutionary relationships to the human apolipoprotein A-I, E, and C-III genes. The rat A-IV gene is 2.4 kilobases in size and consists of three exons (142, 126, and 1157 base pairs) interrupted by two introns (277 and 673 base pairs). The 5'-nontranslated region and most of the signal peptide are encoded by the first exon. Thus, the apo-A-IV gene lacks an intron in the 5'-nontranslated region of its mRNA in contrast to all other known apolipoprotein genes. Sequences coding for amphipathic docosapeptides span both the second and third exons of the rat A-IV gene. We demonstrate that this is also true for the human apolipoprotein genes. This gene family seems to have evolved by the duplication of an ancestral minigene that resulted in the formation of two exons. Thereafter, evolution of these sequences was dominated by intraexonic amplification of repeating units coding for amphipathic peptides. Sequence divergence of these repeats resulted in the functional differentiation of the apolipoproteins. However, conservation of the fundamental amphipathic pattern allowed members of this protein family to retain their lipid-binding properties.  相似文献   

16.
Familial apolipoprotein A-I and C-III deficiency, variant II   总被引:8,自引:0,他引:8  
The biochemical, clinical, and genetic features were examined in the proband (homozygote) and heterozygotes (n = 17) affected with familial apolipoprotein A-I and C-III deficiency, variant II (previously described as apolipoprotein A-I absence). The proband was a 45-year-old white female with mild corneal opacification and significant three-vessel coronary artery disease (CAD), who died shortly after bypass surgery. Autopsy findings included significant atherosclerosis in the coronary and pulmonary arteries and the abdominal aorta as well as extracellular stromal lipid deposition in the cornea. No reticuloendothelial lipid deposits in the liver, bone marrow, or spleen were noted (unlike Tangier disease). Laboratory features included marked high density lipoprotein (HDL) deficiency and undetectable plasma apolipoproteins (apo) A-I and C-III. The percentage of plasma cholesterol in the unesterified form was normal at 30%. The activity and mass of lecithin:cholesterol acyltransferase (LCAT) were 42% and 36% of normal, respectively, and the cholesterol esterification rate was 43% of normal. Deficiencies of plasma vitamin E and essential fatty acid (linoleic, C18:2) were also noted. Evaluation of plasma lipoproteins and apolipoproteins in 37 kindred members revealed 17 heterozygotes with HDL cholesterol values below the 10th percentile of normal. Of these, all had apoA-I levels more than one standard deviation below the normal mean, and 37.5% had a similar decrease in apoC-III values. Mean (+/- SD) plasma HDL cholesterol, apoA-I, and apoC-III values (mg/dl) in heterozygotes were 54.0%, 62.4%, and 79.2% of normal, respectively. No evidence of CAD was observed in 10 heterozygotes 40 years of age or less; however, CAD was detected in 3 of 7 heterozygotes over 40 years of age, one of whom died at age 56 years of complications of myocardial infarction and stroke. The inheritance pattern in this kindred was autosomal codominant. ApoA-I isolated from a heterozygote had an isoelectric focusing pattern and amino acid composition similar to normal. Utilizing DNA isolated from two obligate heterozygotes, no abnormalities in the apoA-I or apoC-III genes were detected by Southern blot analysis utilizing specific probes following restriction enzyme digestion. The data indicate that familial apolipoprotein A-I and C-III deficiency, variant II, is similar to variant I (described by Norum et al. 1982. N. Engl. J. Med. 306: 1513-1519), but differs at the clinical level (lack of xanthomas), the biochemical level (lack of detectable apoA-I, lower apoA-II level), and at the gene level.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Apoproteins of chylomicrons, very low density lipoprotein (VLDL), and a low density + high density fraction secreted by proximal and distal rat small intestine into mesenteric lymph were examined during triglyceride (TG) absorption. Apoprotein output and composition were determined and the turnover rates of labeled non-apoB (soluble) apoproteins in lipoprotein fractions were measured after an intraluminal [(3)H]leucine pulse during stable TG transport into lymph. The output of VLDL apoproteins exceeded that of chylomicrons during the absorption of 45 micro mol of TG per hour. More [(3)H]leucine was incorporated into VLDL than into chylomicrons and the decay of newly synthesized VLDL apoproteins was more rapid than that of chylomicrons, in part due to higher concentrations of apoA-I and apoA-IV with a rapid turnover rate. Chylomicrons from proximal intestine contained more apoA-I and less C peptides than chylomicrons from distal intestine. Ninety percent of [(3)H]leucine incorporated into soluble apoproteins was in apoA-I and apoA-IV, but little apoARP was labeled. The turnover rate of apoA-I and apoA-IV differed significantly in the lymph lipoproteins examined. Although total C peptide labeling was small, evidence for intestinal apoC-II formation and differing patterns of apoC-III subunit labeling was obtained. [(3)H]Leucine incorporation and apoprotein turnover rates in lipoprotein secreted by proximal and distal intestine were similar. The different turnover rates of apoA-I and apoA-IV in individual lipoproteins suggest that these A apoproteins are synthesized independently in the intestine.-Holt, P. R., A-L. Wu, and S. Bennett Clark. Apoprotein composition and turnover in rat intestinal lymph during steady-state triglyceride absorption.  相似文献   

18.
The distribution of apolipoproteins (apo) A-I, A-IV, and E in sera of fed and fasted rats was studied using various methods for the isolation of lipoproteins. Serum concentrations of apoA-I and apoA-IV decreased significantly during fasting (16 and 31%, respectively), while apoE concentrations remained essentially the same. Chromatography of sera on 6% agarose columns showed that apoA-IV is present on HDL and as so-called "free" apoA-IV. The concentration of "free" apoA-IV decreased six- to seven-fold during fasting, explaining the decrease in total serum apoA-IV. Serum apoA-I and apoE are almost exclusively associated with HDL-sized particles. When sera are centrifuged at a density of 1.21 g/ml, marked quantities of apoA-I (8-9%) and apoE (11-22%) are recovered in the "lipoprotein-deficient" infranatant, suggesting that ultracentrifugation affects the integrity of serum HDL. The nature of the chromatographically separated carriers of serum apoA-IV was investigated by quantitative immunoprecipitation. From these studies, it is concluded that apoA-IV in rat serum is present in at least three fractions: 1) particles with the size and composition of HDL, containing both apoA-I and apoA-IV and possibly minor quantities of apoE; 2) HDL-sized particles containing apoA-IV, but no apoA-I or apoE; 3) "free" apoA-IV probably containing small amounts of bound cholesterol and phospholipid.  相似文献   

19.
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.  相似文献   

20.
Intestinal apolipoprotein synthesis and secretion in the suckling pig   总被引:1,自引:0,他引:1  
The present studies report characterization of intestinal apolipoprotein (apoLp) synthesis and secretion in the suckling pig. Lipoproteins (d less than 1.006 g/ml) from mesenteric lymph were found to contain both apoB-100 and B-48, in addition to apoA-IV, E, A-I, and Cs. Lymph low density lipoproteins (LDL) and high density lipoproteins (HDL) contained mainly apoB-100 and apoA-I, respectively. Analysis of core cholesteryl ester fatty acid composition suggested filtration from plasma as the major source of lymph LDL and HDL. Dual radioisotope labeling of intestinal and hepatic apoLps in lymph, as well as immunoprecipitation of radiolabeled intestinal mucosa, demonstrated intestinal synthesis of apoB-48, A-IV, and A-I. There was no evidence for apoB-100 synthesis by intestinal mucosa. By contrast, piglet liver synthesized apoB-100, E, A-I, and Cs, but not apoB-48. Newly synthesized intracellular intestinal apoA-I was mainly (basic) isoform 1 (pI 5.58), while lymph and plasma HDL apoA-I were predominantly isoform 3 (pI 5.33), mature apoA-I. Lymph apoB (P less than 0.001) and apoA-I (P less than 0.04) mass output increased significantly during lipid absorption. Studies were subsequently conducted in fasting, fat-fed, bile-diverted, and sham-operated animals to determine the role of both dietary and biliary lipid in regulating intestinal apoLp biosynthesis. Proximal and distal small intestinal loops were pulse-radiolabeled with [3H]leucine, and apoB-48 and A-I were immunoprecipitated from cytosolic supernatants. Although a proximal to distal gradient in intestinal synthesis rates for both apoB and A-I was noted in all groups, the acute absorption of dietary lipid did not significantly increase apoB or A-I synthesis in either location. Complete removal of biliary lipid for 48 hr did not alter synthesis rates in jejunum or ileum. These studies suggest that mesenteric lymph apoLps in the suckling pig are derived both by filtration from plasma and by direct secretion from the intestine. Physiologic regulation of intestinal apoA-I and B-48 synthesis rates appears to be independent of luminal lipid availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号