首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane penetration depth is an important parameter in relation to membrane structure and organization. A methodology has been developed to analyze the membrane penetration depths of fluorescent molecules or groups utilizing differential fluorescence quenching caused by membrane embedded spin-label probes located at different depths. The method involves determination of the parallax in the apparent location of fluorophores, detected when quenching by phospholipids spin-labelled at two different depths is compared. By use of relatively simple algebraic expressions, the method allows calculation of depth in å. This method has been used to determine the location of fluorophores in NBD-labelled lipids and anthroyloxy-labelled fatty acids in model membranes and of the membrane embedded tryptophan residues in the reconstituted nicotinic acetylcholine receptor.  相似文献   

2.
It has been argued both that there is a high affinity noncompetitive inhibitor binding site in the lumen of the acetylcholine receptor and that this lumen exists on the central axis of the receptor. Such a site would be expected to be 20-40 A from the membrane lipids. We tested whether, in fact, quinacrine, a potent fluorescent noncompetitive inhibitor, binds to such a site. We measured quenching of receptor-bound quinacrine fluorescence by fluorescence dipolar energy transfer to lipid probes, 5-(N-dodecanoylamino)eosin and N-(3-sulfopropyl)-4-(p-didecylaminostyryl)pyridinium, or by collision with paramagnetic lipid probes 2,2,6,6-tetramethylpiperidine-1-oxyl and 3-doxyl-17 beta-hydroxy-5 alpha-androstane (spin-labeled androstane). Initial control experiments established that in the presence of carbamylcholine, quinacrine binds to a phencyclidine-sensitive site on the Torpedo receptor with a Kd equal to 0.14 microM and with a quantum yield of 0.18. Fluorescence energy transfer from receptor-bound quinacrine had a magnitude consistent with quinacrine being less than 10 A from the lipid fluorescent probes. 2,2,6,6-Tetramethylpiperidine-1-oxyl and spin-labeled androstane were two to five times more effective at quenching receptor-bound quinacrine fluorescence than the fluorescence from membrane-partitioned 5-(dodecanoylamino)fluorescein. These results suggest that the quinacrine binding site is too close to the lipid domain to be in the lumen of the receptor, and therefore it is probably located on the outer surface of the membrane-spanning domain of the acetylcholine receptor.  相似文献   

3.
The catalytic domain of cytochrome P450 is thought to contact the lipid core of the endoplasmic reticulum membrane based on antibody epitope accessibility, protease susceptibility, and hydrophobic surfaces present on P450 structures of solubilized forms of the proteins. Quenching by nitroxide spin label-modified phospholipids of the fluorescence of tryptophan residues substituted into cytochrome P450 2C2, modified to contain tryptophan only at position 120, was used to identify regions of P450 inserted into the lipid core and to estimate the depth of penetration. Consistent with the proposed models of cytochrome P450-membrane interaction, the fluorescence of tryptophans inserted at residues 36 and 69 in the two segments of P450 2C2 flanking the A-helix and at residue 380 in the beta2-2 strand was quenched by nitroxide spin labels on carbon 5 of the fatty acid tails of the phospholipids within the lipid bilayer. The fluorescence of tryptophan at 380 was also strongly quenched by a spin label on carbon 12 of the fatty acids suggesting it was deepest in the membrane. However, fluorescence of tryptophan substituted at residue 225 in the F-G loop, which was predicted to be in the lipid bilayer, was not quenched by the spin labels at carbons 5 and 12 of the fatty acids. The pattern of quenching of fluorescence for tryptophans at the other positions tested, 80, 189, 239, and 347, was similar to the parent protein indicating they were not inserted into the lipid bilayer as expected. The results are consistent with an orientation of cytochrome P450 2C2 in the membrane in which positions 36, 69, and 380 are inserted into the lipid bilayer and residues 80 and 225 are near or within the phospholipid headgroup region. In this orientation, the F-G loop, which contains residue 225, could form a dimerization interface as was observed in the P450 2C8 crystal structure (Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497).  相似文献   

4.
The location and environment of tryptophans in the soluble and membrane-bound forms of Staphylococcus aureus alpha-toxin were monitored using intrinsic tryptophan fluorescence. Fluorescence quenching of the toxin monomer in solution indicated varying degrees of tryptophan burial within the protein interior. N-Bromosuccinimide readily abolished 80% of the fluorescence in solution. The residual fluorescence of the modified toxin showed a blue-shifted emission maximum, a longer fluorescence lifetime as compared to the unmodified and membrane-bound alpha-toxin, and a 5- to 6-nm red edge excitation shift, all indicating a restricted tryptophan environment and deeply buried tryptophans. In the membrane-bound form, the fluorescence of alpha-toxin was quenched by iodide, indicating a conformational change leading to exposure of some tryptophans. A shorter average lifetime of tryptophans in the membrane-bound alpha-toxin as compared to the native toxin supported the conclusions based on iodide quenching of the membrane-bound toxin. Fluorescence quenching of membrane-bound alpha-toxin using brominated and spin-labeled fatty acids showed no quenching of fluorescence using brominated lipids. However, significant quenching was observed using 5- and 12-doxyl stearic acids. An average depth calculation using the parallax method indicated that the doxyl-quenchable tryptophans are located at an average depth of 10 A from the center of the bilayer close to the membrane interface. This was found to be in striking agreement with the recently described structure of the membrane-bound form of alpha-toxin.  相似文献   

5.
It has been proposed that the neurotoxicity observed in severely jaundiced infants results from the binding of unconjugated bilirubin to nerve cell membranes. However, despite potentially important clinical ramifications, there remains significant controversy regarding the physical nature of bilirubin-membrane interactions. We used the technique of parallax analysis of fluorescence quenching (Chattopadhyay, A., and E. London. 1987. Biochemistry. 26: 39;-45) to measure the depth of penetration of bilirubin in model phospholipid bilayers. The localization of unconjugated bilirubin and ditaurobilirubin within small unilamellar vesicles composed of dioleoylphosphatidylcholine was determined through an analysis of the quenching of bilirubin fluorescence by spin-labeled phospholipids, and by bilirubin-mediated quenching of a series of anthroyloxy fatty acid probes at various depths within the membrane bilayer. Findings were further verified with potassium iodide as an aqueous quencher. Our results indicate that, at pH 10, unconjugated bilirubin localizes approximately 20 A from the bilayer center, in the region of the polar head groups. Further analyses suggest a modest influence of pH, membrane cholesterol content, and vesicle diameter on the bilirubin penetration depth. Taken together, these data support that, under physiologic conditions, bilirubin localizes to the polar region of phospholipid bilayers, near the membrane-water interface.  相似文献   

6.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

7.
Effects of the nitric oxide donors S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) on Na+,K+-ATPase-rich membrane fragments purified from pig kidney outer medulla were studied using intrinsic fluorescence and ESR of spin-labeled membranes. These S-nitrosothiols differently affected the intrinsic fluorescence of Na+,K+-ATPase: GSNO induced a partial quenching, whereas SNAP produced no alteration. Quenching can be due to a direct modification of exposed tryptophan residues or to an indirect effect caused by reactions of nitrogen oxide reactive species with other residues or even with the membrane lipids. Pre-incubation of Na+,K+-ATPase with 0.4mM GSNO resulted in a modest inhibition of ATPase activity (about 24%) measured under optimal conditions. Stearic acid spin-labeled at the 14th carbon atom (14-SASL) was used to investigate membrane fluidity and the protein-lipid interface. SNAP slightly increased the mobility of bulk lipids from Na+,K+-ATPase-rich membranes, but did not change the fraction of bulk to protein-interacting lipids. Conversely, treatment with GSNO extinguished the ESR signals from 14-SASL, indicating generation of free radicals with high affinity for the lipid moiety. Our results demonstrated that membranes influence bioavailability of reactive nitrogen species and bias the activity of different S-nitrosothiols.  相似文献   

8.
The major protein from bovine seminal plasma, PDC-109 binds selectively to choline phospholipids on the sperm plasma membrane and plays a crucial role in priming spermatozoa for fertilization. The microenvironment and accessibility of tryptophans of PDC-109 in the native state, in the presence of phosphorylcholine (PrC) and phospholipid membranes as well as upon denaturation have been investigated by fluorescence approaches. Quenching of the protein intrinsic fluorescence by different quenchers decreased in the order: acrylamide>succinimide>Cs(+)>I(-). Ligand binding afforded considerable protection from quenching, with shielding efficiencies following the order: dimyristoylphosphatidylcholine (DMPC)>lysophosphatidylcholine (Lyso-PC)>PrC. This has been attributed to a partial penetration of the protein into the DMPC membranes and Lyso-PC micelles, as well as a further stabilization of the binding due to the interaction of PDC-109 with lipid acyl chains and the resulting tightening of the protein structure, leading to a decreased accessibility of the tryptophan residues. Red-edge excitation shift (REES) studies yielded REES values of 4 nm for both native and denatured PDC-109, whereas reduced and denatured protein gave a REES of only 0.5 nm, clearly indicating that the structural and dynamic features of the microenvironment around the tryptophan residues are retained even after denaturation, presumably due to the constraints imposed on the protein structure by disulfide bonds. Upon binding of PDC-109 to DMPC membranes and Lyso-PC micelles the REES values were reduced to 2.5 and 1.0 nm, respectively, which could be due to the penetration of some parts of the protein, especially the segment containing Trp-90 into the membrane interior, where the red-edge effects are considerably reduced.  相似文献   

9.
Location of tryptophans in membrane-bound annexins   总被引:5,自引:0,他引:5  
P Meers 《Biochemistry》1990,29(13):3325-3330
The annexins are a novel class of calcium-dependent membrane binding proteins with highly homologous sequences and similar binding characteristics. In order to better define structural parameters of the membrane-bound form, the localization of tryptophan residues in several of these proteins was studied by use of quenchers of their intrinsic fluorescence. Lipocortin I contains a single tryptophan located near its N-terminus, while the single tryptophan in lipocortin V is located in a repeated consensus sequence. Calcium-dependent binding to vesicles composed of 50% egg phosphatidylcholine and 50% bovine brain phosphatidylserine was accompanied by an increase in emission intensity resulting from a relief of internal quenching. The tryptophan fluorescence of bound lipocortin I was nearly unaffected by substituting the quencher 1-palmitoyl-2-(5-doxylstearoyl)-sn-glycero-3-phosphocholine (5-PC) for egg phosphatidylcholine, while that of the lipocortin V tryptophan was quenched significantly. With the quenching doxyl spin-label located deeper in the bilayer at the 12- and 16-positions of the acyl chain, the quenching was progressively weaker, suggesting an interfacial location for the tryptophan of lipocortin V. The same experiments with lipocortin I show almost no quenching in any case, suggesting that this tryptophan near the amino terminus is protected or oriented away from the membrane surface. Data on the bovine liver calelectrins are also presented showing that endonexin also has a tryptophan residue that interacts strongly with phospholipids.  相似文献   

10.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Jung HJ  Lee JY  Kim SH  Eu YJ  Shin SY  Milescu M  Swartz KJ  Kim JI 《Biochemistry》2005,44(16):6015-6023
VSTx1 is a voltage sensor toxin from the spider Grammostola spatulata that inhibits KvAP, an archeabacterial voltage-activated K(+) channel whose X-ray structure has been reported. Although the receptor for VSTx1 and the mechanism of inhibition are unknown, the sequence of the toxin is related to hanatoxin (HaTx) and SGTx, two toxins that inhibit eukaryotic voltage-activated K(+) channels by binding to voltage sensors. VSTx1 has been recently shown to interact equally well with lipid membranes that contain zwitterionic or acidic phospholipids, and it has been proposed that the toxin receptor is located within a region of the channel that is submerged in the membrane. As a first step toward understanding the inhibitory mechanism of VSTx1, we determined the three-dimensional solution structure of the toxin using NMR. Although the structure of VSTx1 is similar to HaTx and SGTx in terms of molecular fold and amphipathic character, the detailed positions of hydrophobic and surrounding charged residues in VSTx1 are very different than what is seen in the other toxins. The amphipathic character of VSTx1, notably the close apposition of basic and hydrophobic residues on one face of the toxin, raises the possibility that the toxin interacts with interfacial regions of the membrane. We reinvestigated the partitioning of VSTx1 into lipid membranes and find that VSTx1 partitioning requires negatively charged phospholipids. Intrinsic tryptophan fluorescence and acrylamide quenching experiments suggest that tryptophan residues on the hydrophobic surface of VSTx1 have a diminished exposure to water when the toxin interacts with membranes. The present results suggest that if membrane partitioning is involved in the mechanism by which VSTx1 inhibits voltage-activated K(+) channels, then binding of the toxin to the channel would likely occur at the interface between the polar headgroups and the hydrophobic phase of the membrane.  相似文献   

12.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

13.
Fluorescence quenching is used to gain information on the exposure of tryptophan residues to lipid in membrane-bound proteins and peptides. A protocol is developed to calculate this exposure, based on a comparison of quenching efficiency and of a fluorescence lifetime (or quantum yield) measured for a protein and for a model tryptophan-containing compound. Various methods of analysis of depth-dependent quenching are compared and three universal measures of quenching profile are derived. One of the measures, related to the area under profile, is used to estimate quenching efficiency. The method is applied to single tryptophan mutants of a membrane-anchoring nonpolar peptide of cytochrome b(5) and of an outer membrane protein A. Analysis of quenching of the cytochrome's nonpolar peptide by a set of four brominated lipids reveals a temperature-controlled reversible conformational change, resulting in increased exposure of tryptophan to lipid and delocalization of its transverse position. Kinetic quenching profiles and fluorescence binding kinetics reported by Kleinschmidt et al. (Biochemistry (1999) 38, 5006-5016) were analyzed to extract information on the relative exposure of tryptophan residues during folding of an outer membrane protein A. Trp-102, which translocates across the bilayer, was found to be noticeably shielded from the lipid environment throughout the folding event compared to Trp-7, which remains on the cis side. The approach described here provides a new tool for studies of low-resolution structure and conformational transitions in membrane proteins and peptides.  相似文献   

14.
The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.  相似文献   

15.
Cytosolic phospholipase A2 (cPLA2) plays a key role in the generation of arachidonic acid, a precursor of potent inflammatory mediators. Intact cPLA2 is known to translocate in a calcium-dependent manner from the cytosol to the nuclear envelope and endoplasmic reticulum. We show here that the C2 domain of cPLA2 alone is sufficient for this calcium-dependent translocation in living cells. We have identified sets of exposed hydrophobic residues in loops known as calcium-binding region (CBR) 1 and CBR3, which surround the C2 domain calcium-binding sites, whose mutation dramatically decreased phospholipid binding in vitro without significantly affecting calcium binding. Mutation of a residue that binds calcium ions (D43N) also eliminated phospholipid binding. The same mutations that prevent phospholipid binding of the isolated C2 domain in vitro abolished the calcium-dependent translocation of cPLA2 to internal membranes in vivo, suggesting that the membrane targeting is driven largely by direct interactions with the phospholipid bilayer. Using fluorescence quenching by spin-labeled phospholipids for a series of mutants containing a single tryptophan residue at various positions in the cPLA2 C2 domain, we show that two of the calcium-binding loops, CBR1 and CBR3, penetrate in a calcium-dependent manner into the hydrophobic core of the phospholipid bilayer, establishing an anchor for docking the domain onto the membrane.  相似文献   

16.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

17.
Interactions between the fluorophors diphenylhexatriene or gramicidin A′ and lipids are examined using a spin-labeled phosphatidylcholine as a fluorescence quenching probe. It is found that in phospholipid vesicles of mixed lipid composition at temperatures where phospholipids are completely in the liquid crystal phase, several different species of phosphatidylcholines are randomly distributed around the fluorophors. In vesicles of mixed lipid composition which can undergo thermally induced phase separations, the fluorescence quenching observed at lower temperatures reflects a non-random distribution of lipids around each fluorophor. This observation is explained in terms of the partition of fluorophor between a spin-labeled lipid-rich liquid crystal phase, and a spin-labeled lipiddepleted gel phase. Gramicidin A′ strongly favors partition into the liquid crystal phase, whereas diphenylhexatriene partitions about equally between the two lipid phases. A method is described utilizing fluorescence quenching for the calculation of the partition coefficient for a fluorophor. The partition coefficients so calculated are shown to be in good agreement with previously reported values derived from other methods. It is also shown that Ca2+-induced lipid phase separations can be monitored by fluorescence quenching.  相似文献   

18.
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR gamma subunit (gammaM4-Trp(6)) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp(6). We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated gammaM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear alpha-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that gammaM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.  相似文献   

19.
The quenching of tryptophan fluorescence by N-bromosuccinamide, studied by the fluorescence stopped-flow technique, was used to compare the reactivities of tryptophan residues in protein molecules. The reaction of N-bromosuccinamide with the indole group of N-acetyltryptophanamide, a model compound for bound tryptophan, followed second-order kinetics with a rate constant of (7.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1 at 23 degrees C. The rate does not depend on ionic strength or on the pH near neutrality. The non-fluorescent intermediate formed from N-acetyltryptophanamide on the reaction with N-bromosuccinamide appears to be a bromohydrin compound. The second-order rate constant for fluorescence quenching of tryptophan in Gly-Trp-Gly by N-bromosuccinamide was very similar, (8.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1. Apocytochrome c has the conformation of a random coil with the single tryptophan largely exposed to the solvent. The rate constant for the fluorescence quenching of the tryptophan in apocytochrome c by N-bromosuccinamide was (3.7 +/- 0.3) . 10(5) dm3 . mol-1 . s-1. The fluorescence quenching by N-bromosuccinamide of the tryptophan residues incorporated in alpha-chymotrypsin at pH 7.0 showed three exponential terms from which the following rate constants were derived: 1.74 . 10(5), 0.56 . 10(5) and 0.11 . 10(5) dm3 . mol-1 . s-1. This protein is known to have eight tryptophan residues in the native state, six residues at the surface, and two buried. Three of the surface tryptophans have the indole rings protruding out of the molecule and may account for the fastest kinetic phase of the quenching process. The intermediate phase may be due to three surface tryptophans whose indole rings point inwards, and the slowest to the two interior tryptophan residues.  相似文献   

20.
The interactions between a series of spin-labeled local anesthetic analogues and the nicotinic acetylcholine receptor (AChR) have been investigated by means of electron spin resonance (ESR) and fluorescence spectroscopy. The paramagnetic local anesthetic analogues quenched the intrinsic tryptophan fluorescence of AChR-rich membranes in an agonist-dependent manner, demonstrating a direct interaction with the AChR. The quenching efficiency was greater for the benzocaine than for the thioprocaine analogue. The protein was found to restrict directly the molecular motion of the spin-labeled analogues, as seen by the appearance of a highly anisotropic component in the ESR spectrum. The relative affinity of the population of local anesthetic probes which interacts directly with the integral protein of the AChR-rich membranes was calculated on the basis of relative association constants, Kr, determined by ESR. By comparison with the relative association constant for spin-labeled phospholipid, Kro, it was possible to differentiate between local anesthetic analogues interacting with high (Kr/Kro greater than 2), intermediate (Kr/Kro = 1.6-1.9), and low (Kr/Kro less than or equal to 1.3) specificity and to calculate the fraction of protein-associated probe in each case. Differences were observed in the presence of agonist (0.1 mM carbamylcholine) with some, but not all, of the spin-labeled derivatives. The role of the protonatable diethylammonium group in the specificity of the interaction of the procaine and thioprocaine analogues was investigated. Only in the uncharged form, or in the charged form at high ionic strength, was there a preferential association of these two local anesthetic analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号