首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch experiments were conducted to assess both the biotransformation potentials of one hydrocarbon (α-pinene) and four alcohol monoterpenes (arbanol, linalool, plinol, and α-terpineol) under nitrate-reducing conditions at 23 °C, as well as their effects on the nitrate-reducing process. A mixed, nitrate-reducing culture developed from a forest-soil extract was enriched using ethanol as the electron donor and used in this study. α-Pinene was not biotransformed under the conditions of this study and inhibited both ethanol and nitrate utilization. Partial transformation of the alcohol monoterpenes was observed and resulted in inhibition of the nitrate-reducing process and cessation of further utilization of the added monoterpenes. Accumulation of biotransformation products – mainly hydrocarbon monoterpenes such as camphene, β-myrcene, and d-limonene – was observed. The hydrocarbon monoterpenes formed may have been responsible for the observed inhibition of the nitrate-reducing process and lack of complete utilization of the alcohol monoterpenes. These results have significant implications for the expected rate and extent of biotransformation of monoterpenes under anoxic conditions as well as their effect on the nitrate-reducing process in both engineered and natural systems. Received: 8 December 1998 / Received revision: 9 June 1999 / Accepted: 27 June 1999  相似文献   

2.
In order to evaluate hydrocarbon inputs to Crater Lake from anthropogenic and natural sources, samples of water, aerosol, surface slick and sediment were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) for determination of their aliphatic and aromatic hydrocarbon concentrations and compositions. Results show that hydrocarbons originate from both natural (terrestrial plant waxes and algae) and anthropogenic (petroleum use) sources and are entering the lake through direct input and atmospheric transport. The concentrations of petroleum hydrocarbons range from low to undetectable. The distributions and abundances of n-alkanes, polycyclic aromatic hydrocarbons (PAH) and unresolved complex mixture (UCM) from petroleum are similar for all surface slick sampling sites. The estimated levels of PAH in surface slicks range from 7–9 ng/m2 which are low. Transport of petroleum-derived hydrocarbons from the lake surface has resulted in their presence in some sediments, particularly near the boat operations mooring (total petroleum HC = 1440 μg/kg, dry wt. compared to naturally derived n-alkanes, 240 μg/kg, dry wt.). The presence of biomarkers such as the tricyclic terpanes, hopanes and steranes in shallow sediments further confirms petroleum input from boat traffic. In the deep lake sediments, petroleum hydrocarbon concentrations were very low (16 μg/kg, dry wt.). Very low concentrations of PAH were detected in shallow sediments (17–40 μg/kg at 5 m depth near the boat operations) and deep sediments (3–15 μg/kg at 580 m depth). The individual PAH concentrations in sediments (μg/kg or ppb range) are at least three orders of magnitude less than reported threshold effects levels (mg/kg or ppm range, test amphipod Hyalella azteca). Therefore, no adverse effects are expected to occur in benthic biota exposed to these sediments. Boating activities are leaving a detectable level of petroleum in surface waters and lake sediments but these concentrations are very low.  相似文献   

3.
A bacterium obtained by enrichment on nonsorbed phenanthrene was unable to degrade phenanthrene sorbed to polyacrylic beads and had little activity on phenanthrene sorbed to lake-bottom sediment. A bacterium obtained by enrichment on phenanthrene sorbed to polyacrylic beads readily mineralized the compound sorbed to the beads or the sediment. Degradation by the second bacterium of phenanthrene sorbed to beads 38–63 μm or 63–150 μm in diameter was more rapid than the rate of desorption of the hydrocarbon in the absence of the bacterium. Little degradation of sorbed, nonleachable phenanthrene in soil was effected by another isolate obtained by enrichment with the nonsorbed hydrocarbon, but a mixed culture and the bacterium obtained by enrichment on the sorbed compound extensively degraded phenanthrene. Because microorganisms specifically obtained for their capacity to degrade sorbed phenanthrene are more active than species not specialized for use of the bound compound, we suggest that microorganisms enriched on nonsorbed compounds may not be appropriate for evaluation of biodegradation and bioremediation of sorbed compounds. Received: 3 June 1997 / Received revision: 2 September 1997 / Accepted: 15 September 1997  相似文献   

4.
Enhanced biological phosphorus removal (EBPR) from wastewater can be more-or-less practically achieved but the microbiological and biochemical components are not completely understood. EBPR involves cycling microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve a selection of microorganisms with high capacity to accumulate polyphosphate intracellularly in the aerobic period. Biochemical or metabolic modelling of the process has been used to explain the types of carbon and phosphorus transformations in sludge biomass. There are essentially two broad-groupings of microorganisms involved in EBPR. They are polyphosphate accumulating organisms (PAOs) and their supposed carbon-competitors called glycogen accumulating organisms (GAOs). The morphological appearance of microorganisms in EBPR sludges has attracted attention. For example, GAOs as tetrad-arranged cocci and clusters of coccobacillus-shaped PAOs have been much commented upon and the use of simple cellular staining methods has contributed to EBPR knowledge. Acinetobacter and other bacteria were regularly isolated in pure culture from EBPR sludges and were initially thought to be PAOs. However, when contemporary molecular microbial ecology methods in concert with detailed process performance data and simple intracellular polymer staining methods were used, a betaproteobacteria called ‘Candidatus Accumulibacter phosphatis’ was confirmed as a PAO and organisms from a novel gammaproteobacteria lineage were GAOs. To preclude making the mistakes of previous researchers, it is recommended that the sludge ‘biography’ be well understood – i.e. details of phenotype (process performance and biochemistry) and microbial community structure should be linked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
This article presents a study of the efficiency and degradation pattern of samples of petroleum sludge and polluted sandy soil from an oil refinery. A bacterial consortium, consisting of strains from the genera Pseudomonas, Achromobacter, Bacillus and Micromonospora, was isolated from a petroleum sludge sample and characterized. The addition of nitrogen and phosphorus nutrients and a chemical surfactant to both the samples and bioaugmentation to the soil sample were applied under laboratory conditions. The extent of biodegradation was monitored by the gravimetric method and analysis of the residual oil by gas chromatography. Over a 12-week experiment, the achieved degree of TPH (total petroleum hydrocarbon) degradation amounted to 82–88% in the petroleum sludge and 86–91% in the polluted soil. Gas chromatography–mass spectrometry was utilized to determine the biodegradability and degradation rates of n-alkanes, isoprenoids, steranes, diasteranes and terpanes. Complete degradation of the n-alkanes and isoprenoids fractions occurred in both the samples. In addition, the intensities of the peaks corresponding to tricyclic terpenes and homohopanes were decreased, while significant changes were also observed in the distribution of diasteranes and steranes.  相似文献   

6.
Wolinella succinogenes HAP-1 is a Gram-negative microaerophile which reduces perchlorate to chloride by the proposed pathway ClO4 to ClO3 to ClO2 to Cl + O2. A cost-effective perchlorate treatment process has been established using a consortium of facultative anaerobic organisms and W. succinogenes HAP-1. The mixed anaerobic bacterial culture containing W. succinogenes HAP-1 was examined for the ability to form a biofilm capable of perchlorate reduction. An up-flow anaerobic fixed bed reactor (UAFBR) was packed with diatomaceous earth pellets and operated at residence times of 1.17 and 0.46 h to insure a viable biofilm had attached to the diatomaceous earth pellets. Reduction rates of perchlorate to chloride in the UAFBR could be maintained at 1 g of perchlorate reduced h−1 L−1. Studies with the same bacterial consortium in continuously stirred tank reactors (CSTR) generally reduced 0.5–0.7 g of perchlorate h−1. Viable cell counts were performed periodically on the diatomaceous earth pellets and demonstrated that the W. succinogenes HAP-1 population was maintained at 28–47% of the total microbial population. Scanning electron micrographs demonstrated that the external and internal surfaces of the diatomaceous pellets were densely colonized with microbial cells of multiple cell types. This is the first report of an anaerobic mixed culture forming a biofilm capable of perchlorate reduction. Received 22 May 1997/ Accepted in revised form 07 January 1998  相似文献   

7.
The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.  相似文献   

8.
Estuaries are often considered sinks for contaminants and the cleanup of salt marshes, sensitive ecosystems with a major ecological role, should be carried out by means of least intrusive approaches, such as bioremediation. This study was designed to evaluate the influence of plant–microorganisms associations on petroleum hydrocarbons fate in salt marshes of a temperate estuary (Lima River, NW Portugal). Sediments un-colonized and colonized (rhizosediments) by different plants (Juncus maritimus, Phragmites australis, Triglochin striata and Spartina patens) were sampled in four sites of the lower and middle estuary for hydrocarbon degrading microorganisms (HD), total cell counts (TCC) and total petroleum hydrocarbons (TPHs) assessment. In general, TPHs, HD and TCC were significantly higher (P < 0.05) in rhizosediments than in un-colonized sediments. Also recorded were differences on the abundance of hydrocarbon degraders among the rhizosediment of the different plants collected at the same site (J. maritimus < P. australis < T. striata), with statistically significant differences (P < 0.05) between J. maritimus and T. striata. Moreover, strong positive correlations—0.81 and 0.84 (P < 0.05), between biotic (HD) and abiotic (organic matter content) parameters and TPHs concentrations were also found. Our data clearly suggest that salt marsh plants can influence the microbial community, by fostering the development of hydrocarbon-degrading microbial populations in its rhizosphere, an effect observed for all plants. This effect, combined with the plant capability to retain hydrocarbons around the roots, points out that salt marsh plant–microorganisms associations may actively contribute to hydrocarbon removal and degradation in estuarine environments.  相似文献   

9.
A mixed bacterial culture capable of biodegrading of jet fuel was isolated from a heavily polluted site in Tapa, Estonia. Residual concentrations of pollutants in the chemostat culture were determined. The total residual concentrations of dissolved jet fuel in culture medium were 0.42 and 2.1 μg l-1 at the dilution rates 0.1 and 0.17 h-1respectively. Benzene, toluene, ethylbenzene, and xylenes were completely degraded and thus not detected in culture broth (detection limit 0.1 μg l-1)at the dilution rates 0.1 and 0.17 h-1. The values of apparent substrate saturation constant(KSapp) in multisubstrate growth conditions were estimated from the experimental data. The residual concentrations satisfy the regulations in the Republic of Estonia for petroleum hydrocarbons (0.00 mg l-1 – ‘very good’). Results obtained indicate that use of the biodegradation could be sufficient for the treatment of polluted with kerosene-type jet fuel groundwater up to the acceptable quality. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
快速筛选复杂有机物降解微生物混合菌系,在污染物治理过程中具有重要的实践意义.本研究首次尝试利用MicroRespTM技术分析微生物酶液活性的方法,快速标定高效降解菌及混合菌系的石油烃降解能力,并采用传统的摇瓶培养检测法予以验证.通过微生物胞内、胞外及混合酶液的活性分析,考察了不同酶系(胞外、胞内及混合酶液)、菌系对石油烃分子的降解情况.结果表明: 结合MicroRespTM技术的酶液活性测定法能够快速检测石油烃代谢酶系的降解能力,其灵敏度好、通量高,与传统的菌株摇瓶培养方法的检测结果基本一致.其中,7株菌株的120种全组合菌系活性测定试验在12 h周期内1次完成.筛选周期由传统摇瓶培养所需的7 d缩短10倍以上.以酶活性测定结果为指导设计的复配菌系具有较高的降解效率,最高石油烃降解率达(56.1±1.6)%.表明本筛选方法精度高、通量高,可用于石油烃降解功能菌系的构建.  相似文献   

11.
Cultures able to dechlorinate cis-1,2-dichloroethene (cDCE) were selected with ethene (3–20%, v/v) as the sole source of carbon and energy. One mixed culture (K20) could degrade cDCE (400 μmol l–1) or vinyl chloride (100 μmol l–1) in the presence of ethene (≤ 80 μmol l–1 and ≤ 210 μmol l–1, respectively). This culture consists of at least five bacterial strains. All five strains were able to degrade cDCE cometabolically in pure culture. The mixed culture K20 was highly tolerant against cDCE (up to 6 mmol l–1 in the liquid phase). Degradation of cDCE (200 μmol l–1) was not affected by the presence of trichloroethene (100 μmol l–1) or tetrachloroethene (100 μmol l–1). Transformation yields (Ty, defined as unit mass of chloroethene degraded per unit mass of ethene consumed) of the mixed culture K20 were relatively high (0.51 and 0.61 for cDCE and vinyl chloride, respectively). The yield for cDCE with ethene as auxiliary substrate was ninefold higher than any values reported with methane or methane/formate as auxiliary substrate. The viability of the cells of the mixed culture K20 (0.3 mg of cells ml–1) was unaffected by the transformation of ≤ 200 μmol l–1 cDCE in 300 min. Received: 9 March 1999 / Accepted: 21 July 1999  相似文献   

12.
Volatile hydrocarbon biodegradation by a mixed-bacterial culture during growth on Bow River crude oil was investigated using solid phase microextraction (SPME). Inoculum treatments were examined in relation to C5–C11 hydrocarbon degradation. Up to 1600 mg/l biomass (dry weight) was tested without achieving significant volatile hydrocarbon partitioning and affecting analysis. Inoculum age rather than concentration had the most profound impact on biodegradation. When late log phase crude oil-grown inocula were used, C5–C11 biodegradation reached 55–60%; methylcyclohexane and other branched compounds eluting before n-C8 were recalcitrant. Increasing the late log inoculum concentration from 0.63 to 63 mg/l resulted in a twofold increase in degradation rate without improving the substrate range. Methylcyclohexane recalcitrance was correlated with reduced levels of hydrocarbon-degrading bacteria and volatile hydrocarbon evaporation from the inoculum flasks. A decreased lag phase prior to degradation was observed when using early stationary phase cultures as inocula and most compounds up to C11, including methylcyclohexane, were biodegraded. Journal of Industrial Microbiology & Biotechnology (2001) 26, 356–362. Received 16 November 2000/ Accepted in revised form 17 March 2001  相似文献   

13.
Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline–saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5–10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O2 gprotein−1 min−1, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day−1, productivity of 433.4 mgprotein l−1 day−1 and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline–alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline–saline conditions.  相似文献   

14.
Postsynaptic currents and action potentials recorded from neurons in a mixed culture of rat dorsal root ganglion and spinal cord cells are described. The existence of mutual synaptic connections between the above two types of neurons is demonstrated. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 358–360, July–August, 2006.  相似文献   

15.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

16.
We have developed an efficient, reproducible, and scaleable cell culture process for a recombinant adenoviral vector expressing therapeutic transgenes for clinical trials. HEK 293 cells – which support the propagation of E1 deficient adenovirus – were first adapted to serum free media and suspension growth. Subsequent studies focused on the infection, virus production and harvest from suspension culture bioreactors. Future studies are planned to address the kinetics of adenovirus production in HEK 293 as well as in other cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Aerobic bacteria degrading o-nitrobenzaldehyde (ONBA) were isolated from activated sludges. One of the isolates, ONBA-17, was identified as Pseudomonas sp. The isolate could grow on ONBA as its sole source of carbon and nitrogen. Further studies demonstrated that the strain was a moderately halophilic bacterium and capable of degrading benzoic acid, 2-nitrophenol, 2-aminophenol, 4-hydroxybenzoic acid, and 4-dimetylaminobenzaldehyde. It could completely degrade 100 mg L−1 ONBA at a range of pH 6–8 in 48 h at 30°C, and up to 400 mg L−1 after 288 h. The strain showed potential to be a good candidate for biotreatment of industrial wastewaters containing ONBA due to its salt-tolerance ability, multiresistance to some heavy metals and antibiotics, and the abilities of degradation of aromatic compounds. These findings may help in developing a process for ONBA-containing industrial wastewater treatment.  相似文献   

18.
The biodegradation of Bonny light crude petroleum by bacteria in batch culture was enhanced by the addition to culture media, of 0.2 mg of urea and soya bean lecithin per 100 ml of crude oil, sediment and water mixture. Biodegradation was found to be purely an aerobic process. There was a direct relationship between hydrocarbon content and proportion (%) of total heterotrophic count that was capable of growing on crude petroleum as sole carbon and energy source.  相似文献   

19.
During cassava starch production, large amounts of cyanoglycosides were released and hydrolysed by plant-borne enzymes, leading to cyanide concentrations in the wastewater as high as 200 mg/l. For anaerobic degradation of the cyanide during pre-acidification or single-step methane fermentation, anaerobic cultures were enriched from soil residues of cassava roots and sewage sludge. In a pre-acidification reactor this culture was able to remove up to 4 g potassium cyanide/l of wastewater at a hydraulic retention time (t HR) of 4 days, equivalent to a maximal cyanide space loading of 400 mg CN l−1 day−1. The residual cyanide concentration was 0.2–0.5 mg/l. Concentrated cell suspensions of the mixed culture formed ammonia and formate in almost equimolar amounts from cyanide. Little formamide was generated by chemical decay. A concentration of up to 100 mmol ammonia/l had no inhibitory effect on cyanide degradation. The optimal pH for cyanide degradation was 6–7.5, the optimal temperature 25–37 °C. At a pH of 5 or lower, cyanide accumulated in the reactor and pre-acidification failed. The minimal t HR for continuous cyanide removal was 1.5 days. The enriched mixed culture was also able to degrade cyanide in purely mineralic wastewater from metal deburring, either in a pre-acidification reactor with a two-step process or in a one-step methanogenic reactor. It was necessary to supplement the wastewater with a carbon source (e.g. starch) to keep the population active enough to cope with any possible inhibiting effect of cyanide. Received: 29 April 1998 / Received revision: 8 June 1998 / Accepted: 14 June 1998  相似文献   

20.
A hydrocarbon degrading and biosurfactant producing, strain DHT2, was isolated from oil-contaminated soil. The organism grew and produced biosurfactant when cultured in variety of substrates at salinities up to 6 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, alkanes and PAHs as carbon source across the wide range of temperature (30–45°C) and salinity (0–6%). Over the range evaluated, the salinity and temperature did not influence the degradation of hydrocarbon and biosurfactant productions. Isolate DHT2 was identified as Pseudomonas aeruginosa by analysis of 16S rRNA sequences (100% homology) and biochemical analysis. PCR and DNA hybridization studies revealed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by DHT2 during growth on both, water miscible and immiscible substrates, including PAH. The biosurfactants lowered the surface tension of medium from 54.9 to 30.2 dN/cm and formed a stable emulsion. The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as best substrate and toluene was the poorest. These findings further indicate that the isolate could be useful for bioremediation and bio-refining application in petroleum industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号