首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short mRNA analogues carrying a UUU triplet at the 5'-termini and a perfluorophenylazide group at either the N7 atom of the guanosine or the C5 atom of the uridine 3' of the triplet were applied to study positioning of mRNA 3' of the A site codon. Complexes of 80S ribosomes with the mRNA analogues were obtained in the presence of tRNAPhe that directed UUU codon to the P site and consequently provided placement of the nucleotide with cross-linker in positions +9 or +12 with respect to the first nucleotide of the P site bound codon. Both types mRNA analogues cross-linked to the 18S rRNA and 40S proteins under mild UV-irradiation. Cross-linking patterns in the complexes where modified nucleotides of the mRNA analogues were in position +7 were analyzed for comparison (cross-linking to the 18S rRNA in such complexes has been studied previously). The efficiency of cross-linking to the ribosomal components depended on the nature of the modified nucleotide in the mRNA analogue and its position on the ribosome, extent of cross-linking to the 18S rRNA being decreased drastically when the modified nucleotide was moved from position +7 to position +12. The nucleotides of 18S rRNA cross-linked to mRNA analogues were determined. Modified nucleotides in positions +9 and +12 cross-linked to the invariant dinucleotide A1824/A1825 and to variable A1823 in the 3'-minidomain of 18S rRNA as well as to protein S15. The same ribosomal components have been found earlier to cross-link to modified mRNA nucleotides in positions from +4 to +7. Besides, all mRNA analogues cross-linked to the invariant nucleotide c1698 in the 3'-minidomain and to and the conserved region 605-620 closing helix 18 in the 5'-domain.  相似文献   

2.
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors mRNA codon at the decoding site and the downstream triplets. In this study we determined S15 protein fragments located close to mRNA positions +4 to +12 with respect to the first nucleotide of the P site codon on the human ribosome. For cross-linking to ribosomal protein S15, a set of mRNA was used that contained triplet UUU/UUC at the 5'-termini and a perfluorophenyl azide-modified uridine in position 3' of this triplet. The locations of mRNA analogues on the ribosome were governed by tRNAPhe cognate to the UUU/UUC triplet targeted to the P site. Cross-linked S15 protein was isolated from the irradiated with mild UV light complexes of 80S ribosomes with tRNAPhe and mRNA analogues with subsequent cleavage with CNBr that splits polypeptide chain after methionines. Analysis of modified oligopeptides resulted from the cleavage revealed that in all cases cross-linking site was located in C-terminal fragment 111-145 of protein S15 indicating that this fragment is involved in formation of decoding site of the eukaryotic ribosome.  相似文献   

3.
Three mRNA analogs--derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position--were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNA(Phe) was used, while tRNA(Val) was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions -3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with soft UV light (lambda > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions -1 to +3 binds to G1207, while that in positions -2 or -3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the -3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the -3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

4.
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.  相似文献   

5.
The 18S rRNA environment of the mRNA at the decoding site of human 80S ribosomes has been studied by cross-linking with derivatives of hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group either at the N7 atom of the guanine or at the C5 atom of the 5'-terminal uracil residue. The location of the codons on the ribosome at A, P, or E sites has been adjusted by the cognate tRNAs. Three types of complexes have been obtained for each type derivative, namely, (1) codon UUU and Phe-tRNAPhe at the P site (codon GUU at the A site), (2) codon UUU and tRNAPhe at the P site and PheVal-tRNAVal at the A site, and (3) codon GUU and Val-tRNAVal at the P site (codon UUU at the E site). This allowed the placement of modified nucleotides of the mRNA analog at positions -3, +1, or +4 on the ribosome. Mild UV irradiation resulted in tRNA-dependent crosslinking of the mRNA analogs to the 18S rRNA. Nucleotide G961 crosslinked to mRNA position -3, nucleotide G1207 to position +1, and A1823 together with A1824 to position +4. All of these nucleotides are located in the most strongly conserved regions of the small subunit RNA structure, and correspond to nucleotides G693, G926, G1491, and A1492 of bacterial 16S rRNA. Three of them (with the exception of G1491) had been found earlier at the 70S ribosomal decoding site. The similarities and differences between the 16S and 18S rRNA decoding sites are discussed.  相似文献   

6.
7.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNA(Phe), which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNA(Phe) and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

8.
Positioning of stop codon and the adjacent triplet downstream of it with respect to the components of human 80S termination complex was studied with the use of mRNA analogues that bore stop signal UPuPuPu (Pu is A or G) and photoactivatable perfluoroaryl azide group. This group was attached to one of nucleotides of the stop signal or 3' of it (in positions +4 to +9 with respect to the first nucleotide of the P site codon). It was shown that upon mild UV irradiation the mRNA analogues crosslinked to components of model complexes imitating state of 80S ribosome in the course of translation termination. It was found that termination factors eRF1 and eRF3 do not affect mutual arrangement of stop signal and the 18S rRNA. Factor eRF1 was shown to cross-link to modified nucleotides in positions +5 to +9 (ability of eRF1 to cross-link to stop codon nucleotide in position +4 was shown earlier). Fragments of eRF1 containing cross-linking sites of the mRNA analogues were determined. In fragment 52-195 (containing the N-domain and a part of the M-domain) we have found cross-linking sites of the analogues that bore modifying groups on A or G in positions +5 to +9 or at the terminal phosphate of nucleotide in position +7. For mRNA analogues bearing modifying groups on G site of cross-linking from positions +5 to +7 was found in the eRF1 fragment  相似文献   

9.
The protein environment of mRNA 3′ of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5′-end and a perfluoroarylazide group at one of the nucleotide residues 3′ of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in ternary complexes and in the absence of tRNA. Within ternary complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed; it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3′ of the codon in the decoding site.  相似文献   

10.
Three mRNA analogs—derivatives of hexaribonucleotide pUUUGUU comprising phenylalanine and valine codons with a perfluoroarylazido group attached to the C5 atom of the uridine residue at the first, second, or third position—were used for photocrosslinking with 80S ribosomes from human placenta. The mRNA analogs were positioned on the ribosome with tRNA recognizing these codons: UUU was at the P site if tRNAPhe was used, while tRNAVal was used to put there the GUU codon (UUU at the E site). Thus, the crosslinking group of mRNA analog might occupy positions –3 to +3 with respect to the first nucleotide of the codon at the P site. Irradiation of the complexes with mild UV light ( > 280 nm) resulted in the crosslinking of pUUUGUU derivatives with 18S RNA and proteins in the ribosome small subunit. The crosslinking with rRNA was observed only in the presence of tRNA. The photoactivatable group in positions –1 to +3 binds to G1207, while that in positions –2 or –3 binds to G961 of 18S RNA. In all cases, we observed crosslinking with S2 and S3 proteins irrespective of the presence of tRNA in the complex. Crosslinking with S23 and S26 proteins was observed mainly in the presence of tRNA when modified nucleotide occupied the +1 position (for both proteins) or the –3 position (for S26 protein). The crosslinking with S5/S7 proteins was substantial when modified nucleotide was in the –3 position, this crosslinking was not observed in the absence of tRNA.  相似文献   

11.
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.  相似文献   

12.
The protein environment of each nucleotide of the template codon located in the A site of the human ribosome was studied with UUCUCAA and UUUGUU derivatives containing a Phe codon (UUC and UUU, respectively) and a perfluoroarylazido group at U4, U5, or U6. The analogs were positioned in the ribosome with the use of tRNAPhe, which is cognate to the UUC or UUU codon and directs it to the P site, bringing a modified codon in the A site with a modified nucleotide occupying position +4, +5, or +6 relative to the first nucleotide of the P-site codon. On irradiation of ribosome complexes with tRNAPhe and mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins to a greater extent than the rRNA. The 18S rRNA nucleotides crosslinking to the analogs were identified previously. Of the small-subunit proteins, S3 and S15 were the major targets of modification in all cases. The former was modified both in ternary complexes and in the absence of tRNA, and the latter, only in ternary complexes. The extent of crosslinking of mRNA analogs to S15 decreased when the modified nucleotide was shifted from position +4 to position +6. The results were collated with the data on ribosomal proteins located at the decoding site of the 70S ribosome, and conclusion was made that the protein environment of the A-site codon strikingly differs between bacterial and eukaryotic ribosomes.  相似文献   

13.
Oligoribonucleotide derivatives containing Phe codon UUC along with a 3'-flanking sense codon or stop codon carrying a perfluoroarylazido group at G or U were used to study the position of each nucleotide of the latter codon relative to the 18S rRNA in the A site of the 80S ribosome. To place the modified sense or stop codon in the A site, UCC-recognizing tRNA(Phe) was bound in the P site. Regardless of the position in the sense or stop codon, the modified nucleotide crosslinked with invariant dinucleotide A1823/A1824 or nucleotide A1825 in helix 44 close to the 3' end of the 18S rRNA. Located in the second or third position of either codon, the modified G bound with invariant nucleotide G626, which is in the evolutionarily conserved 530 stem-loop segment. The results were collated with the X-ray structure of the bacterial ribosome, and the template codon was assumed to be similarly arranged relative to the small-subunit rRNA in various organisms.  相似文献   

14.
Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2. A modified guanosine cross-linked to nucleotide G1207 if it was in position -3 of the mRNA. These data indicate that nucleotide G961 of the 18S rRNA is close only to mRNA positions -3 and -2, while G1207 is in the vicinity of positions from -3 to +3. The latter suggests that there is a sharp turn between the P and E site bound codons that brings nucleotide G1207 of the 18S rRNA close to each nucleotide of these codons. This correlates well with X-ray crystallographic data on bacterial ribosomes, indicating existence of a sharp turn between the P site and E site bound codons near a conserved nucleotide G926 of the 16S rRNA (corresponding to G1207 in 18S rRNA) close to helix 23b containing the conserved nucleotide 693 of the 16S rRNA (corresponding exactly to G961 of the 18S rRNA).  相似文献   

15.
mRNAs are involved in complicated supramolecular complexes with human 40S and 80S ribosomes responsible for the protein synthesis. In this work, a derivative of nonaribonucleotide pUUCGUAAAA with nitroxide spin labels attached to the 5′-phosphate and to the C8 atom of the adenosine in sixth position (mRNA analog) was used for studying such complexes using double electron-electron resonance/pulsed electron-electron double resonance spectroscopy. The complexes were assembled with participation of tRNAPhe, which targeted triplet UUC of the derivative to the ribosomal peptidyl site and predetermined location of the adjacent GUA triplet coding for Val at the aminoacyl (A) site. The interspin distances were measured between the two labels of mRNA analog attached to the first nucleotide of the peptidyl site bound codon and to the third nucleotide of the A site bound codon, in the absence/presence of second tRNA bound at the A site. The values of the obtained interspin distances agree with those calculated for available near-atomic structures of similar complexes of 40S and 80S ribosomes, showing that neither 60S subunit nor tRNA at the A site have a noticeable effect on arrangement of mRNA at the codon-anticodon interaction area. In addition, the shapes of distance distributions in four studied ribosomal complexes allowed conclusions on conformational flexibility of mRNA in these complexes. Overall, the results of this study are the first, to our knowledge, demonstration of double electron-electron resonance/pulsed electron-electron double resonance application for measurements of intramolecular distances in multicomponent supramolecular complexes involving intricate cellular machineries and for evaluating dynamic properties of ligands bound to these machineries.  相似文献   

16.
Crosslinking of mRNA analog, dodecaribonucleotide pUUAGUAUUUAUU derivative carrying a perfluoroarylazido group at the guanine N7, was studied in model complexes with 80S ribosomes involving tRNA and in binary complex (i.e., in the absence of tRNA). It was shown that, irrespectively of complex formation conditions (13 mM Mg2+, or 4 mM Mg2+ in the presence of polyamines), the mRNA analog in binary complex with 80S ribosomes was crosslinked with sequence 1840–1849 of 18S rRNA, but in the complexes formed with participation of Phe-tRNAPhe (where the G residue carrying the arylazido group occupied position –3 to the first nucleotide of the UUU codon at the P site) the analog was crosslinked with nucleotide 1207. The presence and the nature of tRNA at the E site had no effect on the environment of position –3 of the mRNA analog. Efficient crosslinking of the mRNA analog with tRNA was observed in all studied types of complex. Modified codon GUA, when located at the E site, underwent crosslinking with both cognate valine tRNA and noncognate aspartate tRNA for which the extent of binding at the E site of 80S ribosomes was almost the same and depended little on Mg2+ concentration and the presence of polyamines.  相似文献   

17.
The environment of the template sequence 5 of the E-site codon on the 80S ribosome was studied with nonaribonucleotide or dodecaribonucleotide derivatives containing Phe codon UUU at the 3 end and a perfluoroarylazido group at the first or third nucleotide. A photoreactive group was linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which is cognate to the UUU codon and directs it to the P site, bringing a modified nucleotide in position –4 to –9 relative to the first nucleotide of the P-site codon. Upon irradiation of ribosome complexes with tRNAPhe and the mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins. The major target of modification was S26 in all cases. In addition, S3 was modified to a low extent when the reactive nucleotide was in position –4 and S14 was in position –6. In the absence of tRNA, all mRNA analogs modified S3.  相似文献   

18.
The effects of P/P- and P/E-site tRNA(Phe) binding on the 16S rRNA structure in the Escherichia coli 70S ribosome were investigated using UV cross-linking. The identity and frequency of 16S rRNA intramolecular cross-links were determined in the presence of deacyl-tRNA(Phe) or N-acetyl-Phe-tRNA(Phe) using poly(U) or an mRNA analogue containing a single Phe codon. For N-acetyl-Phe-tRNA(Phe) with either poly(U) or the mRNA analogue, the frequency of an intramolecular cross-link C967 x C1400 in the 16S rRNA was decreased in proportion to the binding stoichiometry of the tRNA. A proportional effect was true also for deacyl-tRNA(Phe) with poly(U), but the decrease in the C967 x C1400 frequency was less than the tRNA binding stoichiometry with the mRNA analogue. The inhibition of the C967 x C1400 cross-link was similar in buffers with, or without, polyamines. The exclusive participation of C967 with C1400 in the cross-link was confirmed by RNA sequencing. One intermolecular cross-link, 16S rRNA (C1400) to tRNA(Phe)(U33), was made with either poly(U) or the mRNA analogue. These results indicate a limited structural change in the small subunit around C967 and C1400 during tRNA P-site binding sensitive to the type of mRNA that is used. The absence of the C967 x C1400 cross-link in 70S ribosome complexes with tRNA is consistent with the 30S and 70S crystal structures, which contain tRNA or tRNA analogues; the occurrence of the cross-link indicates an alternative arrangement in this region in empty ribosomes.  相似文献   

19.
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors the mRNA codon at the decoding site and the downstream triplets. The S15 fragment juxtaposed in the human ribosome to mRNA nucleotides +4 to +12 relative to the first nucleotide of the P-site codon was determined. S15 was modified using a set of mRNA analogs containing the triplet UUU/UUC at the 5′ end and a perfluorophenyl azide-carrying uridine at various positions downstream of this triplet. The mRNA analogs were positioned on the ribosome with the use of tRNAPhe, cognate to the UUU/UUC triplet, targeted to the P site. Modified S15 was isolated from complexes of 80S ribosomes with tRNAPhe and the mRNA analogs after irradiation with mild UV light and hydrolyzed with cyanogen bromide, cleaving the polypeptide chain after Met residues. Analysis of the modified oligopeptides resulting from hydrolysis demonstrated that the crosslinking site was in C-terminal fragment 111–145 of S15 in all cases, suggesting the involvement of this fragment in the decoding site of the eukaryotic ribosome.  相似文献   

20.
Crosslinking of mRNA analog, dodecaribonucleotide pUUAGUAUUUAUU derivative carrying a perfluoroarylazido group at the guanine N7, was studied in model complexes with 80S ribosomes involving tRNA and in binary complex (i.e., in the absence of tRNA). It was shown that, irrespectively of complex formation conditions (13 mM Mg2+, or 4 mM Mg2+ in the presence of polyamines), the mRNA analog in binary complex with 80S ribosomes was crosslinked with sequence 1840-1849 of 18S rRNA, but in the complexes formed with participation of Phe-TPHKPhe (where the G residue carrying the arylazido group occupied position-3 to the first nucleotide of the UUU codon at the P site) the analog was crosslinked with nucleotide 1207. The presence and the nature of tRNA at the E site had no effect on the environment of position-3 of the mRNA analog. Efficient crosslinking of the mRNA analog with tRNA was observed in all studied types of complex. Modified codon GUA, when located at the E site, underwent crosslinking with both cognate valine tRNA and noncognate aspartate tRNA for which the extent of binding at the E site of 80S ribosomes was almost the same and depended little on Mg2+ concentration and the presence of polyamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号