首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A formula for the effective population size for the finite island model of subdivided populations is derived. The formula indicates that the effective size can be substantially greater than the actual number of individuals in the entire population when the migration rate among subpopulations is small. It is shown that the mean nucleotide diversity, coalescence time, and heterozygosity for genes sampled from the entire population can be predicted fairly well from the theory for randomly mating populations if the effective population size for the finite island model is used.  相似文献   

2.
Thomas Nagylaki 《Genetics》1981,97(3-4):731-737
Assuming random mating and discrete nonoverlapping generations, the inbreeding effective population number, (see PDF), is calculated for an X-linked locus. For large populations, the result agrees with the variance effective population number. As an application, the maintenance of genetic variability by the joint action of mutation and random drift is investigated. It is shown that, if every allele mutates at rate u to new types, then the probabilities of identity in state (and hence the expected homozygosity of females) converge to the approximate value (see PDF) at the approximate asymptotic rate (see PDF).  相似文献   

3.
Following an inbreeding approach and assuming discrete generations and autosomal inheritance involving genes that do not affect viability or reproductive ability, I have derived expressions for the inbreeding effective size, NeI, for a finite diploid population with variable census sizes for three cases: monoecious populations with partial selfing; dioecious populations of equal numbers of males and females with partial sib mating; and unequal numbers of males and females with random mating. For the first two cases, recurrence equations for the inbreeding coefficient are also obtained, which allow inbreeding coefficients to be predicted exactly in both early and late generations. Following the variance of change in gene frequency approach, a general expression for variance effective size, NeV, is obtained for a population with unequal numbers of male and female individuals, arbitrary family size distribution, and nonrandom mating. All the parameters involved are allowed to change over generations. For some special cases, the equation reduces to the simple expressions approximately as derived by previous authors. Comparisons are made between equations derived by the present study and those obtained by previous authors. Some of the published equations for NeI and NeV are shown to be incomplete or incorrect. Stochastic simulations are run to check the results where disagreements with others are involved.  相似文献   

4.
Prediction of rates of inbreeding in selected populations   总被引:2,自引:0,他引:2  
A method is presented for the prediction of rate of inbreeding for populations with discrete generations. The matrix of Wright's numerator relationships is partitioned into 'contribution' matrices which describe the contribution of the Mendelian sampling of genes of ancestors in a given generation to the relationship between individuals in later generations. These contributions stabilize with time and the value to which they stabilize is shown to be related to the asymptotic rate of inbreeding and therefore also the effective population size, Ne approximately 2N/(mu 2r + sigma 2r), where N is the number of individuals per generation and mu r and sigma 2r are the mean and variance of long-term relationships or long-term contributions. These stabilized values are then predicted using a recursive equation via the concept of selective advantage for populations with hierarchical mating structures undergoing mass selection. Account is taken of the change in genetic parameters as a consequence of selection and also the increasing 'competitiveness' of contemporaries as selection proceeds. Examples are given and predicted rates of inbreeding are compared to those calculated in simulations. For populations of 20 males and 20, 40, 100 or 200 females the rate of inbreeding was found to increase by as much as 75% over the rate of inbreeding in an unselected population depending on mating ratio, selection intensity and heritability of the selected trait. The prediction presented here estimated the rate of inbreeding usually within 5% of that calculated from simulation.  相似文献   

5.
Summary Probability models of branching processes and computer simulations of these models are used to examine stochastic survivorship of female lineages under a variety of demographic scenarios. A parameter II, defined as the probability of survival of two or more independent lineages over G generations, is monitored as a function of founding size of a population, population size at carrying capacity, and the frequency distributions of surviving progeny.Stochastic lineage extinction can be very rapid under certain biologically plausible demographic conditions. For stable-sized populations initiated by n females and/or regulated about carrying capacity k=n, it is highly probable that within about 4n generations all descendants will trace their ancestries to a single founder female. For a given mean family size, increased variance decreases lineage survivorship. In expanding populations, however, lineage extinction is dramatically slowed, and the final k value is a far more important determinant of II than is the size of the population at founding. The results are discussed in the context of recent empirical observations of low mitochondrial DNA (mtDNA) sequence heterogeneity in humans and expected distributions of asexually transmitted traits among sexually reproducing species.  相似文献   

6.
Consider a large random mating monoecious diploid population that has N individuals in each generation. Let us assume that at time 0 a random sample of ninfinity. It is then possible to obtain a generalization of coalescent theory for haploid populations if the distribution of G1 has a finite second moment and E[G(1)(3)]/N-->0 as N-->infinity.  相似文献   

7.
A multitype branching process is proposed as a model for the behaviour of populations of the budding yeast Saccharomyces Cerevisiae. Using the idea of branching processes counted by random characteristics, we are able to obtain explicit expressions describing different aspects of the asymptotic composition of such populations. The main purpose of this note is to show that the branching process approach is an alternative to deterministic population models based on differential equation methods.Supported by the Swedish Natural Science Research Council  相似文献   

8.
We performed computer simulations to evaluate the effectiveness of circular mating as a genetic management option for captive populations. As a benchmark, we used the method proposed by Fernández and Caballero according to which parental contributions are set to produce minimum coancestry among the offspring and matings are performed so as to minimize mean pairwise coancestry (referred to as the Gc/mc method). In contrast to other methods, fitness does not vary with population size in the case of circular mating, and can be higher than under random mating. Whether circular mating is an effective method in conserving captive populations depends on the trade-off between different considerations. On the one hand, circular mating shows the highest allelic diversity and the lowest mean pairwise coancestry for all population sizes. It also shows a relatively higher efficiency of purging deleterious alleles. More importantly, circular mating can significantly increase the success probability of populations released to the wild relative to the Gc/mc method. On the other hand, circular mating has the drawback of showing high inbreeding rates and low fitness in early generations, which can result to an increase in the extinction probability of the captive populations. However, this increase is slight unless population size and litter size are both very low. Overall, if the slight increase in extinction probability can be tolerated then circular mating fulfils the primary goals of a captive breeding program, i.e., it maintains high levels of genetic diversity and increases the success probability of reintroduced populations.  相似文献   

9.
Rapid evolutionary change over a few generations has been documented in natural populations. Such changes are observed as organisms invade new environments, and they are often triggered by changed interspecific interactions, such as differences in predation regimes. However, in spite of increased recognition of antagonistic male-female mating interactions, there is very limited evidence that such intraspecific interactions could cause rapid evolutionary dynamics in nature. This is because ecological and longitudinal data from natural populations have been lacking. Here we show that in a color-polymorphic damselfly species, male-female mating interactions lead to rapid evolutionary change in morph frequencies between generations. Field data and computer simulations indicate that these changes are driven by sexual conflict, in which morph fecundities are negatively affected by frequency- and density-dependent male mating harassment. These frequency-dependent processes prevent population divergence by maintaining a female polymorphism in most populations. Although these results contrast with the traditional view of how sexual conflict enhances the rate of population divergence, they are consistent with a recent theoretical model of how females may form discrete genetic clusters in response to male mating harassment.  相似文献   

10.
In this work we study the behavior of a time discrete multiregional stochastic model for a population structured in age classes and spread out in different spatial patches between which individuals can migrate. The dynamics of the population is controlled both by reproduction-survival and by migration. These processes take place at different time scales in the sense of the latter being much faster than the former. We incorporate the effect of demographic stochasticity into the population, which results in both dynamics being modelled by multitype Bienaymé–Galton–Watson branching processes. We present a multitype global model that incorporates the effect of both processes and, making use of the existence of different time scales for demography and migration, build a reduced model in which the variables correspond to the total population in each age class. We extend previous results that relate the behavior of the original and the reduced model showing that, given a large enough separation of time scales between demography and migration, we can obtain information about the behavior of the multitype global model through the study of the simpler reduced model. We concentrate on the case where the two systems are supercritical and therefore the expected number of individuals grows to infinity, and show that we can approximate the asymptotic structure of the population vector and the asymptotic population size of the original system through the study of the reduced model.  相似文献   

11.
Genetic drift and estimation of effective population size   总被引:3,自引:2,他引:1       下载免费PDF全文
Nei M  Tajima F 《Genetics》1981,98(3):625-640
The statistical properties of the standardized variance of gene frequency changes (a quantity equivalent to Wright's inbreeding coefficient) in a random mating population are studied, and new formulae for estimating the effective population size are developed. The accuracy of the formulae depends on the ratio of sample size to effective size, the number of generations involved (t), and the number of loci or alleles used. It is shown that the standardized variance approximately follows the chi(2) distribution unless t is very large, and the confidence interval of the estimate of effective size can be obtained by using this property. Application of the formulae to data from an isolated population of Dacus oleae has shown that the effective size of this population is about one tenth of the minimum census size, though there was a possibility that the procedure of sampling genes was improper.  相似文献   

12.
Waxman D 《Genetics》2012,191(2):561-577
A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ~4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.  相似文献   

13.
A note on effective population size with overlapping generations   总被引:13,自引:7,他引:6       下载免费PDF全文
Hill WG 《Genetics》1979,92(1):317-322
A simple derivation is given for a formula obtained previously for the effective size of random-mating populations with overlapping generations. The effective population size is the same as that for a population with discrete generations having the same variance of lifetime family size and the same number of individuals entering the population per generation.  相似文献   

14.
Let a population have the same age distribution and age-specific sex ratios at times 0, 1, 2,..., and let M, F, and L, respectively, be the numbers of males and females in the youngest age group and the generation interval. It can then be shown that if there is a sex-linked locus the fixation probabilities of a neutral allele are respectively 1/3LM or 1/3LF if the allele first appears in one newborn male or in one newborn female. The effective population size can then be derived. It is the same as for a population with discrete generations having the same means, variances, and covariances of male and female progeny during a lifetime and the same number of individuals entering the population per generation.  相似文献   

15.
Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck.  相似文献   

16.
Woolliams JA  Bijma P 《Genetics》2000,154(4):1851-1864
Tractable forms of predicting rates of inbreeding (DeltaF) in selected populations with general indices, nonrandom mating, and overlapping generations were developed, with the principal results assuming a period of equilibrium in the selection process. An existing theorem concerning the relationship between squared long-term genetic contributions and rates of inbreeding was extended to nonrandom mating and to overlapping generations. DeltaF was shown to be approximately (1)/(4)(1 - omega) times the expected sum of squared lifetime contributions, where omega is the deviation from Hardy-Weinberg proportions. This relationship cannot be used for prediction since it is based upon observed quantities. Therefore, the relationship was further developed to express DeltaF in terms of expected long-term contributions that are conditional on a set of selective advantages that relate the selection processes in two consecutive generations and are predictable quantities. With random mating, if selected family sizes are assumed to be independent Poisson variables then the expected long-term contribution could be substituted for the observed, providing (1)/(4) (since omega = 0) was increased to (1)/(2). Established theory was used to provide a correction term to account for deviations from the Poisson assumptions. The equations were successfully applied, using simple linear models, to the problem of predicting DeltaF with sib indices in discrete generations since previously published solutions had proved complex.  相似文献   

17.
J. Wang 《Genetics》1997,146(4):1453-1463
Assuming discrete generations and autosomal inheritance involving genes that do not affect viability or reproductive ability, we have derived recurrence equations for the inbreeding coefficient and coancestry between individuals within and among subpopulations for a subdivided monoecious population with arbitrary distributions of male and female gametes per family, variable pollen and seed migration rates, and partial selfing. From the equations, formulas for effective size and expressions for F-statistics are obtained. For the special case of a single unsubdivided population, our equations reduce to the simple expressions derived by previous authors. It is shown that population structure (subdivision and migration) is important in determining the inbreeding coefficient and effective size. Failure to recognize internal structures of populations may lead to considerable bias in predicting effective size. Inbreeding coefficient, coancestry between individuals within and among subpopulations accrue at different and variable rates over initial generations before they converge to the same asymptotic rate of increase. For a given population, the smaller the pollen and seed migration rates, the more generations are required to attain the asymptotic rate and the larger the asymptotic effective size. The equations presented herein can be used for the study of evolutionary biology and conservation genetics.  相似文献   

18.
J. Wang 《Genetics》1997,146(4):1465-1474
Assuming discrete generations and autosomal inheritance involving genes that do not affect viability or reproductive ability, we have derived recurrence equations for the inbreeding coefficient and coancestry between individuals within and among subpopulations for a subdivided monoecious population with arbitrary distributions of male and female gametes per family, variable pollen and seed migration rates, and partial selfing. From the equations, formulas for effective size and expressions for F-statistics are obtained. For the special case of a single unsubdivided population, our equations reduce to the simple expressions derived by previous authors. It is shown that population structure (subdivision and migration) is important in determining the inbreeding coefficient and effective size. Failure to recognize internal structures of populations may lead to considerable bias in predicting effective size. Inbreeding coefficient, coancestry between individuals within and among subpopulations accrue at different and variable rates over initial generations before they converge to the same asymptotic rate of increase. For a given population, the smaller the pollen and seed migration rates, the more generations are required to attain the asymptotic rate and the larger the asymptotic effective size. The equations presented herein can be used for the study of evolutionary biology and conservation genetics.  相似文献   

19.
In a two-sex monogamic population, the evolution of the number of carriers of the two alleles of a Y-linked gene is considered. To this end, a multitype bisexual branching model is presented in which it is assumed that the gene has no influence on the mating process. It is deduced from this model that the average numbers of female and male descendants per mating unit constitute the key to determining the extinction or survival of each allele. Moreover, the destiny of each allele in the population is found not to depend on the behavior of the other.  相似文献   

20.
We study some exact properties of supercritical branching processes. A proper rescaling of the relevant variable allows us to determine the distribution of population sizes after a number of generations have elapsed. Both time-continuous and discrete processes are analysed and compared. The obtained results are of relevance for the growth of populations that are not resource limited (a typical situation in some biological processes that can be modelled by laboratory experiments). Large fluctuations inherent to the process play a main role when bottlenecks occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号