首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: Loss of sensitivity to TGF-beta1 (transforming growth factor beta1)-induced growth arrest is an important step towards malignant transformation in human epithelial cells, and Id-1 (inhibitor of differentiation or DNA binding-1) has been associated with cell proliferation and cell-cycle progression. Here, we investigated the role of Id-1 in cellular sensitivity to TGF-beta1. RESULTS: Using an immortalized prostate epithelial cell line, NPTX cells, we suppressed Id-1 expression through antisense strategy. We found that inhibition of Id-1 expression suppressed cell proliferation and at the same time induced cellular senescence and G2/M cell-cycle arrest. In addition, inactivation of Id-1 made cells more vulnerable to TGF-beta1-induced growth arrest. The sensitization effect on TGF-beta1 was associated with up-regulation of two downstream effectors of the TGF-beta1 pathway, p21WAF1/Cip1 and p27KIP1. CONCLUSION: Our results indicate that endogenous Id-1 levels might be a crucial factor in the development of resistance to TGF-beta1-induced growth suppression in human prostate epithelial cells.  相似文献   

2.
Understanding the stages of cell differentiation in the normal prostate epithelium isessential for the identification of the cell type(s) involved in prostatic carcinogenesis.Prostate glands are composed of three types of epithelial cells (i.e. basal, secretory andneuroendocrine) but the hierarchical relations among these cell types have been longcontroversial. We have recently developed a novel system to define prostate epithelialcell lineages in vivo. We find that, during normal prostate organogenesis, terminallydifferentiated secretory cells derive from p63-positive basal cells, which thusrepresent/include prostate stem cells. Future studies will determine if p63-positive basalcells retain stem cells capabilities in the adult prostate epithelium.  相似文献   

3.
Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. Using a transgenic cell ablation approach, we found in our previous study that cells expressing Notch1 are crucial for prostate early development and re-growth. Here, we further define the role of Notch signaling in regulating prostatic epithelial cell growth and differentiation using biochemical and genetic approaches in ex vivo or in vivo systems. Treatment of developing prostate grown in culture with inhibitors of gamma-secretase/presenilin, which is required for Notch cleavage and activation, caused a robust increase in proliferation of epithelial cells co-expressing cytokeratin 8 and 14, lack of luminal/basal layer segregation and dramatically reduced branching morphogenesis. Using conditional Notch1 gene deletion mouse models, we found that inactivation of Notch1 signaling resulted in profound prostatic alterations, including increased tufting, bridging and enhanced epithelial proliferation. Cells within these lesions co-expressed both luminal and basal cell markers, a feature of prostatic epithelial cells in predifferentiation developmental stages. Microarray analysis revealed that the gene expression in a number of genetic networks was altered following Notch1 gene deletion in prostate. Furthermore, expression of Notch1 and its effector Hey-1 gene in human prostate adenocarcinomas were found significantly down-regulated compared to normal control tissues. Taken together, these data suggest that Notch signaling is critical for normal cell proliferation and differentiation in the prostate, and deregulation of this pathway may facilitate prostatic tumorigenesis.  相似文献   

4.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

5.
6.
CD44 is a polymorphic transmembrane glycoprotein that binds hyaluronan and growth factors. Multiple isoforms of the protein can be generated by alternative splicing but little is known about the expression and function of these isoforms in normal development and differentiation. We have investigated the expression of CD44 during normal prostate epithelial cell differentiation. A conditionally immortalized prostate epithelial cell line, Pre2.8, was used as a model system. These cells proliferate at 33C but at 39C stop dividing and undergo changes consistent with early stages of cell differentiation. During the differentiation of these cells, the expression of the CD44 isoform v3-v10 was upregulated. Two layers of epithelial cells can clearly be distinguished in the human prostate, a basal layer expressing keratins 5/14 and a luminal layer expressing keratins 8/18. In prostate tissue the v3-v10 isoform was found predominantly in basal cells but also in keratin 14-negative, keratin 19-positive cells intermediate between the two layers. CD44 v3-v10 was also expressed in other keratin 14-negative prostate tissues, the ejaculatory ducts and prostatic urethra. Therefore, CD44 v3-v10 may be important as a cell surface marker for differentiating cells in the prostate epithelium.  相似文献   

7.
In vivo studies have demonstrated that p63 plays complex and pivotal roles in pluristratified squamous epithelial development, but its precise function and the nature of the isoform involved remain controversial. Here, we investigate the role of p63 in epithelial differentiation, using an in vitro ES cell model that mimics the early embryonic steps of epidermal development. We show that the DeltaNp63 isoform is activated soon after treatment with BMP-4, a morphogen required to commit differentiating ES cells from a neuroectodermal to an ectodermal cell fate. DeltaNp63 gene expression remains high during epithelial development. P63 loss of function drastically prevents ectodermal cells to commit to the K5/K14-positive stratified epithelial pathway while gain of function experiments show that DeltaNp63 allows this commitment. Interestingly, other epithelial cell fates are not affected, allowing the production of K5/K18-positive epithelial cells. Therefore, our results demonstrate that DeltaNp63 may be dispensable for some epithelial differentiation, but is necessary for the commitment of ES cells into K5/K14-positive squamous stratified epithelial cells.  相似文献   

8.
9.
An intermediate population has been identified among prostate glands called transiently amplifying (TA) cells, which are characterized by coexpression of basal and luminal cytokeratins (CKs), high proliferation, and lack of p27 expression. These cells are rare in the normal adult prostate and increase in pretumoral conditions, but their importance in the developing gland remains unknown. We analyzed fetal prostates for the expression of CKs (5/6, 18, 19) and factors involved in proliferation and apoptosis: p63, Ki67, p27, epidermal growth factor (EGFR), Bcl2, androgen receptor (AR). Immunostaining was performed on a tissue microarray, including 40 prostates from fetuses aged 13-42 weeks and normal prostate tissue from 10 adults. In both solid buds and the basal compartment of canalized glands, cells expressed p63, CK5/6, CK19, CK18, BCL2, EGFR and were p27 negative. Luminal cells of fetal canalized glands continue to express CK19, EGFR, and BCL2, without p27 expression. In contrast, adult epithelial luminal cells showed diffuse AR and p27 expression, without CK19, BCL2, and EGFR staining. Proliferation was high and diffuse in fetal glands and rare and restricted to basal cells in adult glands. These results indicate that most fetal epithelial prostatic cells exhibit the phenotype of TA cells, suggesting their regulatory function in prostate development.  相似文献   

10.
Role of p63 and basal cells in the prostate   总被引:6,自引:0,他引:6  
The prostate contains two major epithelial cell types - luminal and basal cells - both of which develop from urogenital sinus epithelium. The cell linage relationship between these two epithelial types is not clear. Here we demonstrate that luminal cells can develop independently of basal cells, but that basal cells are essential for maintaining ductal integrity and the proper differentiation of luminal cells. Urogenital sinus (UGS) isolated from p63(+/+) and p63(-/-) embryos developed into prostate when grafted into adult male nude mice. Prostatic tissue that developed in p63(-/-) UGS grafts contained neuroendocrine and luminal cells, but basal cells were absent. Therefore, p63 is essential for differentiation of basal cells, but p63 and thus basal cells are not required for differentiation of prostatic neuroendocrine and luminal epithelial cells. p63(-/-) prostatic grafts also contained atypical mucinous cells, which appeared to differentiate from luminal cells via activation of Src. In the response to castration, regression of p63(-/-) prostate was inordinately severe with almost complete loss of ducts, resulting in the formation of residual cystic structures devoid of epithelium. Therefore, basal cells play critical roles in maintaining ductal integrity and survival of luminal cells. However, regressed p63(-/-) prostate did regenerate in response to androgen administration, indicating that basal cells were not essential for prostatic regeneration.  相似文献   

11.
12.
13.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   

14.
Differential expression of p63 isoforms in female reproductive organs   总被引:4,自引:0,他引:4  
p63 is the identity switch for uterine/vaginal epithelial cell fate, and disruption of p63 expression by diethylstilbestrol (DES) induces cervical/vaginal adenosis in mice. In this article, we report the expression patterns of p63 isoforms (TA, DeltaN, alpha, beta and gamma) in mice, focusing on the reproductive tract. We also present the reproductive tract phenotype of female p63-/- mice. Finally, to better evaluate the potential role of p63 in human development of DES-induced cervical/vaginal adenosis, we describe the ontogeny of p63 in human female fetuses. In adult mice, the DeltaN isoforms of p63 were expressed only in squamous/basal/myoepithelial cells of epithelial tissues, while TA isoforms of p63 were highly expressed in germ cells of the ovary and testis. In fetal mice, the DeltaN and alpha forms of p63 were expressed in the cloacal and urogenital sinus epithelia. In the female p63-/- mice, the sinus vagina developed, but p63-/- sinus vaginal epithelium failed to undergo squamous differentiation confirming an essential role of p63 in squamous epithelial differentiation. Although TAp63 was highly expressed in developing primordial germ cells/oocytes, p63-/- ovaries and oocytes developed normally. The ontogeny of p63 in female reproductive organs was essentially identical in mouse and human. In the human fetus at the susceptible stage for DES-induced cervical/vaginal adenosis, most cervical/vaginal epithelial cells were columnar and negative for p63. Therefore, inhibition of p63 expression by DES should change the cell fate of human Müllerian duct epithelial cells and cause cervical/vaginal adenosis as previously demonstrated in mouse.  相似文献   

15.
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.  相似文献   

16.
In vivo studies have demonstrated that p63 plays complex and pivotal roles in pluristratified squamous epithelial development, but its precise function and the nature of the isoform involved remain controversial. Here, we investigate the role of p63 in epithelial differentiation, using an in vitro ES cell model that mimics the early embryonic steps of epidermal development. We show that the ΔNp63 isoform is activated soon after treatment with BMP-4, a morphogen required to commit differentiating ES cells from a neuroectodermal to an ectodermal cell fate. ΔNp63 gene expression remains high during epithelial development. P63 loss of function drastically prevents ectodermal cells to commit to the K5/K14-positive stratified epithelial pathway while gain of function experiments show that ΔNp63 allows this commitment. Interestingly, other epithelial cell fates are not affected, allowing the production of K5/K18-positive epithelial cells. Therefore, our results demonstrate that ΔNp63 may be dispensable for some epithelial differentiation, but is necessary for the commitment of ES cells into K5/K14-positive squamous stratified epithelial cells.  相似文献   

17.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号