首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reported conversion of d-arabinose 5-phosphate to d-ribose 5-phosphate and other intermediates of the pentose phosphate pathway was investigated. Two new solvent systems to separate the two aldopentose phosphates on paper and a method using chromatography on a column of dihydroxyboryl-cellulose were developed. No evidence for their interconversion could be obtained. d-Arabinose 5-phosphate did not serve as an acceptor for transketolase from bakers' yeast, Candida utilis, or rat liver but behaved as an inhibitor. d-Glucose 6-phosphate acted both as an acceptor and as an inhibitor of the reaction with d-ribose 5-phosphate as acceptor. d-Arabinose 5-phosphate was not converted into ribose 5-phosphate, ketopentose phosphate, triose phosphate, or a heptulose phosphate by rat muscle or rat liver enzymes. Hydroxypyruvate is suggested not to be a substrate for rat liver transketolase.  相似文献   

2.
The multiplicity of transketolase forms, differing in thermostability and separated by phosphocellulose chromatography, has been shown. Using SDS-PAGE, it was found that the mobility of yeast enzyme forms in all cases was identical. Certain forms of transketolase from yeast, rat or pig liver and from some organs of the rabbit were similar with regard to their chromatographic behaviour and thermostability. The form ratio seems to be determined by the physiological state of the organism.  相似文献   

3.
Kinetic analysis permitted to determine two sites of hydroxythiamine diphosphate binding in apotransketolase. The Ki values for these sites differed significantly: (7-22) X 10(-9) M and (13.0-19.7) X 10(-8) M. The rate of thiamine diphosphate turnover within holotransketolase in rat liver tissue was studied by the radioisotope method, using [14C]thiamine as a labeled precursor. The absolute values of half-substitution time and the rate constant of coenzyme degradation in the transketolase molecule are close to those for the protein moiety of the enzyme and are 153 hours and 0.108 days-1, respectively. In vivo rat liver transketolase exists in a substituted alpha-carbanion form. Within the holoenzyme molecule substitution of thiamine diphosphate for hydroxythiamine diphosphate does not influence the formation of an intermediate alpha-carbanion form of the enzyme.  相似文献   

4.
Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in individual cells. In situ detection of transketolase is important because this multifunctional enzyme has been related with diseases such as cancer, diabetes, Alzheimer's disease, and Wernicke-Korsakoff's syndrome. The proposed method is based on the tetrazolium salt method applied to unfixed cryostat sections in the presence of polyvinyl alcohol. The method appeared to be specific for transketolase activity when the proper control reaction is performed and showed a linear increase of the amount of final reaction product with incubation time. Transketolase activity was studied in liver, small intestine, trachea, tongue, kidney, adrenal gland, and eye. Activity was found in liver parenchyma, epithelium of small intestine, trachea, tongue, proximal tubules of kidney and cornea, and ganglion cells in medulla of adrenal gland. To demonstrate transketolase activity ultrastructurally in liver parenchymal cells, the cupper iron method was used. It was shown that transketolase activity was present in peroxisomes and at membranes of granular endoplasmic reticulum. This ultrastructural localization is similar to that of glucose-6-phosphate dehydrogenase activity, suggesting activity of the pentose phosphate pathway at these sites. It is concluded that the method developed for in situ localization of transketolase activity for light and electron microscopy is specific and allows further investigation of the role of transketolase in (proliferation of) cancer cells and other pathophysiological processes.  相似文献   

5.
Using ion-exchange chromatography of sucrose phosphates on Dowex-1, it was demonstrated that the highly purified rat liver transketolase (specific activity 1.7 mumol/min.mg protein) is capable of catalyzing the synthesis of erythrose-4-phosphate, a metabolite of the pentose phosphate pathway non-oxidizing step, from the initial participants of glycolysis, i. e., glucose-6-phosphate and fructose-6-phosphate. As can be evidenced from the reaction course, the second product of this synthesis is octulose-8-phosphate. The reaction was assayed by accumulation of erythrose-4-phosphate. The soluble fraction from rat liver catalyzes under identical conditions the synthesis of heptulose-7-phosphate (but not erythrose-4-phosphate), which points to the utilization of the erythrose-4-phosphate formed in the course of the transketolase reaction by transaldolase which is also present in the soluble fraction. The role of the transketolase reaction reversal from the synthesis of pentose phosphate derivatives to glycolytic products is discussed. The transketolase reaction provides for the relationship between glycolysis and the anaerobic step of the pentose phosphate pathway which share common metabolites, i. e. glucose-6-phosphate and fructose-6-phosphate.  相似文献   

6.
An analysis of steady-state kinetics of purified rat liver transketolase shows that the reaction proceeds according to a two-stroke substitution ("ping-pong") mechanism. Based on the kinetic data, a competitive relationship was shown to exist between xylulose-5-phosphate and ribose-5-phosphate for the sites of substrate binding by the substituted form of the enzyme with the formation of a non-productive abortive complex (kd = 125 microM). The values of constants of two monomolecular steps of the reaction (k2 = 42 s-1; k4 = 9.4 s-1) were determined. It was assumed that the maximum rate-limiting step of the transketolase reaction is the degradation of the substituted form of transketolase--ribose-5-phosphate complex having a rate constant of k4.  相似文献   

7.
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer’s disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.  相似文献   

8.
Some properties of homogeneous transketolase from pig liver were studied. It was shown that the pH optimum of the transketolase reaction lies within the range of 7.8--8.2. The isoelectric point is at pH 7.6--7.8. The molecular weight of transketolase is 138,000 +/- 3,000 as determined by the sedimentation equilibrium method and about 152,000 according to the data from gel filtration through Sephadex G-200. The enzyme molecule is a tetramer of the alpha 2 beta 2 type. The molecular weights of the alpha- and beta- subunits determined by polyacrylamide gel in the presence of sodium dodecyl sulfate are 52,000--56,000 and 27,000--29,000, respectively. Transketolase contains about two moles of TPP per mole of protein and does not require metal ions for its catalytic activity.  相似文献   

9.
The nature of the thiamine diphosphate binding proteins from rat liver hyaloplasm was studied. When [14C]thiamine was used as a marker, a [14C]thiamine diphosphate-containing electrophoretically homogeneous protein preparation was isolated from the liver soluble fraction and classified as transketolase. No other non-enzymatic proteins which bind thiamine diphosphate and can serve as substrates in the reaction of thiamine diphosphate synthesis in the hyaloplasm were found. It was shown that the phosphate group is transferred by rat liver thiamine diphosphate kinase to the free (but not to the protein-bound) thiamine diphosphate as it was believed earlier.  相似文献   

10.
Possible xenobiotic interactions with thiamine were studied in salmonid fish, by repeatedly injecting two model substances, paraquat and menadione, into juvenile rainbow trout (Oncorhynchus mykiss). These two substances were chosen because of their well-known ability to redox-cycle and cause depletion of NADPH in several biological systems. Depletion of NADPH increases metabolism through the pentose-phosphate shunt and may thereby increase the need for thiamine diphosphate by heightened transketolase activity. A special food was produced with lower thiamine content than commercial food, usually enriched with thiamine, which could mask an effect on the thiamine level. After 9 weeks of exposure, glucose-6-phosphate dehydrogenase, transketolase, glutathione reductase and ethoxyresorufin O-deethylase were analysed in liver and kidney cellular sub-fractions as well as analysis of total thiamine concentrations in liver, kidney and muscle. The results showed that paraquat caused a large increase in hepatic glutathione reductase activity and induced hepatic glucose-6-phosphate dehydrogenase activity, i.e., the rate-limiting enzyme in the oxidative part of the pentose-phosphate shunt. Despite this paraquat exposure did not affect transketolase activity and total thiamine concentration.  相似文献   

11.
Gel filtration and equilibrium dialysis demonstrated that the hyaloplasmic fraction of the liver of B1-deficient rats does not practically bind C-TDP in vitro. An addition of the excess of non-labelled coenzyme does not increase the transketolase activity. The data obtained suggest that transketolase activation in the hyaloplasmic fraction of the liver of B1-deficient rats after administration of thiamine in vivo is due to stimulation of the additional synthesis of the enzyme protein rather than to the saturation of the free apoenzyme with newly-formed TDP. In vivo and in vitro studies suggest that the hyaloplasmic fraction of the liver of B1-deficient rats contains no free apoenzyme of transketolase.  相似文献   

12.
1. A study was made of transketolase activity in red and white blood cells and of conditions for assay for transketolase activity and for assessment of the "TPP effect" in human and rat blood. 2. The ratio of the transketolase activity in white cells to that in red cells varied between 23 and 93. 3. Red cells or white cells can both be used for assessment of transketolase activity and the "TPP effect", but the best source for evaluation of transketolase activity and the percent change on addition of thiamin diphosphate appears to be whole blood.  相似文献   

13.
Comparative study on vertebrate liver AMP deaminases   总被引:1,自引:0,他引:1  
Similar activity of AMP deaminase was found in rat, hen, turtle and flounder liver when estimated at high AMP concentration. The enzyme activity was of an order of magnitude higher in frog liver. Simple step by step phosphocellulose column chromatography revealed two forms of AMP deaminase in chicken and flounder liver and one form in the liver of rat and turtle. All enzymes (except for frog liver AMP deaminase) were activated by ATP. The enzymes from rat, frog and both forms from flounder were also activated by ADP. GTP exhibited a variety of effects. The enzyme from rat and turtle was inhibited, both forms from hen and flounder were activated and frog liver enzyme was not influenced.  相似文献   

14.
Two isoforms of arginase, A1 and A2, were found in rat liver, submaxillary gland and kidney as well as beef kidney. In beef liver, however, A2 was the only detectable form. Two additional forms, A3 and A4, found only in rat kidney were probably artifactitious. A1 and A2 exhibited chromatographic and immunological microheterogeneity. While A1 in rat liver and submaxillary gland was excluded by DEAE-cellulose (pH 8.3) and retained on CM-cellulose (pH 7.5), that (A'1) in beef and rat kidneys was excluded by both ion-exchangers. A2 in all tissues was retained on DEAE-cellulose, but not on CM-cellulose. Both A1 and A2 in rat liver and beef kidney, A1 from rat submaxillary gland and A2 from beef liver were precipitated by antibodies to rat and beef liver arginases. None of the forms in rat kidney (A1, A2, A3 and A4) showed any cross-reactivity to either antibody. Rat submaxillary gland A2 was precipitated by anti-rat liver arginase, but activated by anti-beef liver arginase. While the major molecular forms were A1 in rat liver and submaxillary gland and A2 in beef liver and rat kidney, the two forms occurred in equal proportions in beef kidney. It appears that different isoforms might function as components of the urea cycle in the liver of different mammals and of the arginine catabolic pathway in different extrahepatic tissues.  相似文献   

15.
The B1-antivitamin activity of oxythiamine disulphide nicotinate has been determined in experiments on albino mice and it is shown that in the liver this derivative exerts the equal action while in the blood and heart--a more profound and prolonged inhibitory action on the transketolase activity in comparison with oxythiamine disulphide. Like the initial compound oxythiamine disulphide nicotinate does not penetrate through hemato-encephalic barrier and does not inhibit the brain transketolase.  相似文献   

16.
17.
Tyrosine aminotransferase multiple forms occurring in rat liver are not present in all mammalian species. Among animals examined only rat and mouse liver possesses multiple forms of tyrosine aminotransferase; in guinea-pig, rabbit, bovine and sheep liver the enzyme occurs in a single form. The presence of lysosomal converting factor (cathepsin T), responsible for arising of multiple forms of tyrosine aminotransferase in rat liver, has been checked in another species lacking enzyme subforms. Lysosomal extracts of guinea-pig liver interconverts tyrosine aminotransferase from rat liver; lysosomal extracts of rat liver does not generate multiple forms of the enzyme from guinea-pig liver. It has been concluded that in some animals hepatic tyrosine aminotransferase is resistant to the proteolytic cleavage by lysosomal cathepsin T.  相似文献   

18.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

19.
The molecula-kinetic parameters (Km, Ki) of three thiamine enzymes, e. g. thiamine pyrophosphokinase (EC 2.7.6.2), pyruvate dehydrogenase (EC 1.2.4.1) and transketolase (EC 2.2.1.1) with respect to the effects of the thiamine antimetabolite hydroxythiamine in the whole animal organism have been compared. It has been shown that only the first two enzymes, which interact competitively with the vitamin, antivitamin or their pyrophosphate ethers, obey the kinetic parameters obtained for the purified enzymes in vitro. The anticoenzymic effect of hydroxythiamine pyrophosphate with respect to transketolase is not observed in vivo at maximal concentration of the anticoenzyme in tissues due to the absence of competitive interactions with thiamine pyrophosphate. The incorporation of the true and false coenzymes into transketolase occurs only during de novo transketolase synthesis (the apoform is absent in tissues, with the exception of erythrocytes) and proceeds slowly with a half-life time equal to 24--30 hrs. After a single injection of hydroxythiamine at a large dose (70--400 mg/kg) the maximal inhibition of the transketolase activity in tissues (liver, heart, kidney, muscle, spleen, lungs adrenal grands) manifests itself by the 48th--72nd hour, when the concentration of free hydroxythiamine and its pyrophosphate is minimal and the whole anticoenzyme is tightly bound to the protein, forming the false holoenzyme. The use of hydroxythiamine for inhibition of pyruvate dehydrogenase or transketolase in animal organism is discussed.  相似文献   

20.
T K Pradhan  W E Criss 《Enzyme》1976,21(4):327-331
The major enzymatic forms of adenylate kinase have been purified to homogeneity from fetal liver and adult brain of the rat. The two enzymes differ with respect to isoelectric points, Km (ATP), Km (AMP), and Ka (citrate). Antibody to adult liver adenylate kinase does not inhibit either enzyme, while entibody to adult skeletal muscle enzyme inhibits the brain enzyme but not the fetal liver enzyme. It is therefore probable that there are three major forms of adenylate kinases in fetal and adult rat tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号