首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Migratory behaviour at spawning of wild and newly-escaped farmed Atlantic salmon was analysed by radio telemetry in the River Alta, North Norway. Spawning areas were located by aerial surveys. Farmed females moved significantly more than wild females ( P <0.01). There was no such difference between the two groups of males. About 83% of the wild fish stayed within identified spawning areas for 1 day or longer. The corresponding figure for farmed salmon was only 43% ( P <0.05). Wild salmon stayed 8.1 days inside spawning areas and farmed salmon 5.2 days. The present results suggest that escaped farmed salmon had reduced spawning success compared with wild fish.  相似文献   

2.
There is concern that the progeny resulting from the spawnings of escaped farmed Atlantic salmon may compete with and disrupt native salmon populations. This study compared, both in the hatchery and in the wild, fitness-related traits and examined interactions among farmed, native and hybrid 0+ parr derived from controlled crosses and reared under common conditions. The farmed salmon were seventh-generation fish from the principal commercial strain in Norway and native salmon were from the rivers Imsa and Lone, Norway. In the hatchery, farmed salmon were more aggressive than both native populations and tended to dominate them in pairwise contests. Farmed salmon were also more prone to risk, leaving cover sooner after a simulated predator attack, and had higher growth rates than native fish. Interbreeding between farmed and native fish generally resulted in intermediate expression of the above traits. There was, however, evidence of hybrid vigour in Lone/farmed crosses which were able to dominate both pure Lone and farmed parr in pairwise contests. In the wild, observations of habitat use and diet suggested that the populations compete for territory and food, and both farmed fish and hybrids expressed higher growth rates than native fish. Our results suggest that these innate differences in behaviour and growth, that probably are linked closely to fitness, will threaten native populations through competition and disruption of local adaptations.  相似文献   

3.

Gene editing offers opportunities to solve fish farming sustainability issues that presently hampers expansion of the aquaculture industry. In for example Atlantic salmon farming, there are now two major bottlenecks limiting the expansion of the industry. One is the genetic impact of escaped farmed salmon on wild populations, which is considered the most long-term negative effect on the environment. Secondly and the utmost acute problem is the fish parasite salmon lice, which is currently causing high lethality in wild salmonids due to high concentrations of the parasite in the sea owing to sea cage salmon farming. There are also sustainability issues associated with increased use of vegetable-based ingredients as replacements for marine products in fish feed. This transition comes at the expense of the omega-3 content both in fish feed and the fish filet of the farmed fish. Reduced fish welfare represents another obstacle, and robust farmed fish is needed to avoid negative stress associated phenotypes such as cataract, bone and fin deformities, precocious maturity and higher disease susceptibility. Gene editing could solve some of these problems as genetic traits can be altered positively to reach phenotype of interest such as for example disease resistance and increased omega-3 production.

  相似文献   

4.
Pancreas disease (PD) of farmed Atlantic salmon Salmo salar L., which is caused by an alphavirus known as salmon pancreas disease virus (SPDV), can have serious economic consequences. An epidemiological survey carried out in Ireland in 2003 indicated that within individual farms there were significant differences in the susceptibility of different strains of farmed Atlantic salmon to infection with SPDV, as measured by levels of clinical disease and mortality. The aim of this preliminary study was to investigate this field observation by comparing lesion development, viraemia and serological responses of 3 commercial strains of Atlantic salmon (A, B and C) experimentally infected with SPDV. Highly significant differences in the severity of lesions in the pancreas at Day 21 post-infection (pi) were detected (p < 0.01), with Group B being more severely affected. There were also significant differences in the prevalence and severity of lesions in heart and skeletal muscle at Day 21 and 35 pi respectively, with Group B results again significantly higher than those from both Groups A and C (p < 0.05). There was no overlap between viraemia and the presence of specific SPDV antibody. Some fish in all groups had no viraemia, lesions or evidence of seroconversion. There were no significant differences seen between the challenged groups in relation to the percentage of viraemic fish at each time point. Viral loads were not determined. Differences between the number of antibody-positive fish in each challenge group were found at Days 28 and 35 pi (p < 0.1). Highly significant differences (p < 0.01) in the geometric mean titres of seropositive fish were detected at Day 28. These results, obtained using a challenge model, confirm that there are strain differences in the susceptibility to experimental SPDV infection in commercial farmed Atlantic salmon.  相似文献   

5.
Cataracts in farmed Atlantic salmon have been known for many years, but the aetiology and importance of the disease have not been clarified. A cross-sectional field study of 51 cages of Atlantic salmon at 49 randomly selected sea sites was performed during the summer of 1998. The target population was spring and autumn entry groups of the 1997 generation salmon. Approximately 15 fish from each cage, altogether 777 fish, were autopsied by the same person. Each eye of the fish was scored for cataracts on a scale from 0 to 4 using an otoscope lamp with magnification. The weight and length of each fish were measured. The prevalence of cataracts was 83 % and 79% in spring entry groups and autumn entry groups, respectively. The overall mean cataract index (mean score of both eyes) was 1.23, being significantly higher in the spring entry groups (1.36) than the autumn entry groups (0.85). The final results in the spring entry groups showed that the fish groups with higher weight at sea transfer also had a higher cataract index at inspection. The risk of development of cataracts varied significantly among the offspring from the 5 strains represented in the study. Fish from sites located in 2 counties in the southern part of Norway had a significantly higher cataract index than fish farmed in the northernmost county in the study. For the autumn entry groups none of the explanatory variables was significant. In the spring entry groups a significant negative relationship was observed between the cataract score and the weight of the fish at the time of inspection (Pearson's r = -0.17), while the corresponding correlation for the autumn released groups was r = -0.10. Among the spring entry groups the average weight of the fish with the highest cataract score was estimated to about a third of the weight of the fish with no visible cataracts.  相似文献   

6.
7.
The present study describes the use of molecular methods in studying infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Canada, USA and Chile. The nucleotide sequences of the haemagglutinin gene (HA) from 70 ISAV isolates have been analysed for phylogenetic relationship and the average mutation rate of nucleotide substitutions calculated. The isolates constitute 2 major groups, 1 European and 1 North American group. The isolate from Chile is closely related to the North American isolates. The European isolates can be further divided into 3 separate groups reflecting geographical distribution, time of collection, and transmission connected with farming activity. Based on existing information about infectious salmon anaemia (ISA) and new information emerging from the present study, it is hypothesised that: (1) ISAV is maintained in wild populations of trout and salmon in Europe; (2) it is transmitted between wild hosts mainly during their freshwater spawning phase in rivers; (3) wild salmonids, mainly trout, possibly carry benign wild-type ISAV isolates; (4) a change (mutation) in virulence probably results from deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates; (5) ISA emerges in farmed Atlantic salmon when mutated isolates are transmitted from wild salmonids or, following mutation of benign isolates, in farmed salmon after transmission from wild salmonids; (6) farming activity is an important factor in transmission of ISAV between farming sites in addition to transmission of ISAV from wild salmonids to farmed salmon; (7) transmission of ISAV from farmed to wild salmonids probably occurs less frequently than transmission from wild to farmed fish due to lower frequency of susceptible wild individuals; (8) the frequency of new outbreaks of ISA in farmed salmon probably reflects natural variation in the prevalence of ISAV in wild populations of salmonids.  相似文献   

8.
This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions ( e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.  相似文献   

9.
The extent and effect of disease interaction and pathogen exchange between wild and farmed fish populations is an ongoing debate and an area of research that is difficult to explore. The objective of this study was to investigate pathogen transmission between farmed and wild Atlantic salmon (Salmo salar L.) populations in Norway by means of molecular epidemiology. Piscine reovirus (PRV) was selected as the model organism as it is widely distributed in both farmed and wild Atlantic salmon in Norway, and because infection not necessarily will lead to mortality through development of disease. A matrix comprised of PRV protein coding sequences S1, S2 and S4 from wild, hatchery-reared and farmed Atlantic salmon in addition to one sea-trout (Salmo trutta L.) was examined. Phylogenetic analyses based on maximum likelihood and Bayesian inference indicate long distance transport of PRV and exchange of virus between populations. The results are discussed in the context of Atlantic salmon ecology and the structure of the Norwegian salmon industry. We conclude that the lack of a geographical pattern in the phylogenetic trees is caused by extensive exchange of PRV. In addition, the detailed topography of the trees indicates long distance transportation of PRV. Through its size, structure and infection status, the Atlantic salmon farming industry has the capacity to play a central role in both long distance transportation and transmission of pathogens. Despite extensive migration, wild salmon probably play a minor role as they are fewer in numbers, appear at lower densities and are less likely to be infected. An open question is the relationship between the PRV sequences found in marine fish and those originating from salmon.  相似文献   

10.
11.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon (Salmo salar). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s?1 and two standard deviations of flow velocity of 5 and 8 cm s?1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

12.
To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post‐smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro‐anatomical level. Animals that received the P‐deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X‐ray‐based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency‐related malformations in farmed S. salar.  相似文献   

13.
Domestication has been shown to have an effect on morphology and behaviour of Atlantic salmon ( Salmo salar ). We compared swimming costs of three groups of juvenile Atlantic salmon subject to different levels of domestication: (1) wild fish; (2) first generation farmed fish origination from wild genitors; and (2) seventh generation farmed fish originating from Norwegian aquaculture stocks. We assessed swimming costs under two types of turbulent flow (one mean flow velocity of 23 cm s−1 and two standard deviations of flow velocity of 5 and 8 cm s−1). Respirometry experiments were conducted with fish in a mass range of 5–15 g wet at a water temperature of 15° C. Our results confirm (1) that net swimming costs are affected by different levels of turbulence such that, for a given mean flow velocity, fish spent 1·5‐times more energy as turbulence increased, (2) that domesticated fish differed in their morphology (having deeper bodies and smaller fins) and in their net swimming costs (being up to 30·3% higher than for wild fish) and (3) that swimming cost models developed for farmed fish may be also be applied to wild fish in turbulent environments.  相似文献   

14.
In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions.  相似文献   

15.
16.
The only carotenoid detected in newly fertilized eggs of wild Atlantic salmon, Salmo salar, from western Scotland was astaxanthin at a concentration [μg carotenoid g?1 wet wt of eggs, mean ±S.D. (number of parental females)] of 6.2±1.2(7) in 1982, 6.4±1.8(20) in 1983, and 7.6 ± 13(6) in 1984. In eggs of farmed Atlantic salmon the only carotenoid detected was canthaxanthin at concentrations which varied significantly between farms depending on the level of synthetic canthaxanthin in the broodstock diet. Thus on two farms using feed with 50 μgg?1, the levels were 11.8 ± 3.4(7) and 12.3 ± 2.9(6), while on two farms using 75μgg?1 the levels were 18.7 ± 5.0(9) and 21.2 ± 2.7(21). The levels in eggs of one-seawinter fish (grilse) did not differ from those of two-seawinter fish reared on the same farm and diet. During development from newly fertilized egg to fry at the end of yolk-sac absorption, the quantity of carotenoid present per individual decreased, presumably as a result of metabolism. Despite large differences in quantity present, the quantity so metabolized was fairly constant at 2–4 μg carotenoid g?1 original egg weight for eggs from two-seawinter farmed and wild salmon, except that in eggs from farmed grilse it was 7 μg g?1. In fry from wild eggs, 99.14% of the remaining carotenoid was present in the integument (skin and fins) as astaxanthin, astaxanthin monoester and astaxanthin diester. In fry from farmed salmon eggs, 47 ± 8% of the carotenoid present was found in the unused yolk oil droplets and in the liver, and 37 ± 6% was found in the integument as canthaxanthin and an unidentified metabolite of canthaxanthin. These findings explain visible colour differences between fry from wild parents and fry from canthaxanthin-fed farmed parents, particularly in the fins, liver and residual oil droplets. The canthaxanthin metabolite was also found, together with canthaxanthin, in the skin of farmed adults fed canthaxanthin. Preliminary tests showed it to be unchanged by saponification but reduced by sodium borohydride. For eggs from the three farms incubated under the same conditions in the same season, percentage mortality both to the eyed stage and between hatching and first feeding varied significantly between farms, but percentage mortality between the eyed stage and hatching did not do so. Results combined from two seasons for eggs from three farms and one wild source showed that egg mortality between fertilization and the eyed stage was not significantly different between wild and farmed salmon, but mortality between the eyed stage and hatching, and between hatching and first feeding, were both significantly higher in farmed salmon than in wild salmon. Such differences could not be explained simply by the large differences in egg carotenoid content, but were almost certainly due to factors such as broodstock nutrition, broodstock management, and stripping and fertilization procedures.  相似文献   

17.
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.  相似文献   

18.
Spironucleus barkhanus isolated from the blood of Arctic charr Salvelinus alpinus from a marine fish farm were genetically compared with S. barkhanus isolated from the gall bladder of wild Arctic charr. The wild Arctic charr were caught in the lake used as the water source for the hatchery from which the farmed fish originated. Sequencing of the small subunit ribosomal RNA gene (SSU rDNA) from these 2 populations showed that the isolates obtained from farmed and wild Arctic charr were only 92.7 % similar. Based on the sequence differences between these isolates, it is concluded that the parasites isolated from the farmed fish have not been transmitted from wild Arctic charr in the hatchery's fresh water source. It is therefore most likely that the farmed fish were infected by S. barkhanus after they were transferred to seawater. S. barkhanus isolated from diseased farmed Arctic charr were 99.7% similar to the isolates obtained from diseased farmed Chinook (Canada) and Atlantic salmon (Norway). The high degree of sequence similarity between S. barkhanus from farmed Arctic charr, Chinook and Atlantic salmon indicates that systemic spironucleosis may be caused by specific strains/variants of this parasite. The genetic differences between the isolates of farmed and wild fish are of such magnitude that their conspecificity should be questioned.  相似文献   

19.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

20.
The global increase in the production of domestic farmed fish in open net pens has created concerns about the resilience of wild populations owing to shifts in host–parasite systems in coastal ecosystems. However, little is known about the effects of increased parasite abundance on life-history traits in wild fish populations. Here, we report the results of two separate studies in which 379 779 hatchery-reared Atlantic salmon smolts were treated (or not) against salmon lice, marked and released. Adults were later recaptured, and we specifically tested whether the age distribution of the returning spawners was affected by the treatment. The estimates of parasite-induced mortality were 31.9% and 0.6% in the River Vosso and River Dale stock experiments, respectively. Age of returning salmon was on average higher in treated versus untreated fish. The percentages of fish returning after one winter at sea were 37.5% and 29.9% for the treated and untreated groups, respectively. We conclude that salmon lice increase the age of returning salmon, either by affecting their age at maturity or by disproportionately increasing mortality in fish that mature early.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号