首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.  相似文献   

2.
There is little information available on the primary products of photosynthesis and the change in the activity of the associated enzymes with altitude. We studied the same in varieties of barley and wheat grown at 1300 (low altitude, LA) and 4200 m (high altitude, HA) elevations above mean sea level in the western Himalayas. Plants at both the locations had similar photosynthetic rates, leaf water potential and the chlorophyll fluorescence kinetics. The short-term radio-labelling experiments in leaves showed appearance of 14CO2 in phosphoglyceric acid and sugar phosphates in plants at both the LA and HA, suggesting a major role of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in CO2 fixation in the plants at two altitudes, whereas the appearance of labelled carbon in aspartate (Asp) and glutamate (Glu) at HA suggested a role of phosphoenolpyruvate carboxylase (PEPCase) in photosynthesis metabolism. Plants at HA had significantly higher activities of PEPCase, carboxylase and oxygenase activity of Rubisco, aspartate aminotransferase (AspAT), and glutamine synthetase (GS). However, the activities of malate dehydrogenase, NAD-malic enzyme and citrate synthase were similar at the two locations. Such an altered metabolism at HA suggested that PEPCase probably captured CO2 directly from the atmosphere and/or that generated metabolically e.g. from photorespiration at HA. Higher oxygenase activity at HA suggests high photorespiratory activity. OAA thus produced could be additionally channelised for Asp synthesis using Glu as a source of ammonia. Higher GS activity ensures higher assimilation rate of NH3 and the synthesis of Glu through GS-GOGAT (glutamine:2-oxoglutarate aminotransferase) pathway, also as supported by the appearance of radiolabel in Glu at HA. Enhanced PEPCase activity coupled with higher activities of AspAT and GS suggests a role in conserving C and N in the HA environment.  相似文献   

3.
A bitter controversy had existed as to the minimum number of quanta required for the evolution of one molecule of oxygen in photosynthesis: Otto Warburg had insisted since 1923 that this value was 3–4, whereas Robert Emerson and others continued to obtain a value of 8–12 since the 1940s. It is shown in this letter that the 1931 Nobel-laureate of Physiology & Medicine Otto Warburg published, in his last and final paper, just before his death in 1970, a measured minimum quantum requirement of oxygen evolution of 12 at the lowest intensities of light he used. Although using his theory on photolyte, Warburg calculated a value of 3–4 for the quantum requirement, this is the first confirmation by Warburg of the higher measured quantum requirement. However, it has remained unknown to most investigators. It is expected that this information will be of general interest not only to those interested in the history and research on photosynthesis, but to the entire sci entific community, especially the writers of text books in biology, biochemistry and biophysics.  相似文献   

4.
巢湖蓝藻水华形成原因探索及"优势种光合假说"   总被引:12,自引:0,他引:12  
为探索蓝藻水华的形成原因,从2007以来对巢湖西区浮游藻类种类、优势种季节变化、初级生产力、水质参数及优势种的光合生理生态学特性作了观测。关于蓝藻水华形成过程中迅猛发展的原因,近80a已提出了10种假说,但对解释巢湖形成的蓝藻水华,尚显不足。本文基于我们对蓝藻水华的了解,提出了如下“优势种光合假说”:(1)蓝藻水华包含各种藻类,蓝藻水华发生不仅与藻细胞浓度有关,还与水体初级生产力直接有关。巢湖中这两者在夏季最大,在冬季最小。但无定量关系。(2)水华藻类中生长最快、细胞密度最大的是优势种,含有多个优势种时可能随季节更替。巢湖几乎整年发生蓝藻水华,已检测出4种优势种都是蓝藻,从早春起先是水华鱼腥藻,以后有绿色微囊藻、惠氏微囊藻和铜绿微囊藻。(3)各种环境因子都影响优势种生长,其中少数主导因子影响较大。在巢湖富营养条件下,光强、温度和pH值是主导因子。(4)主导因子对优势种光合活性的影响,可决定其能否处于优势。巢湖的温度和pH值变化可能促进了惠氏微囊藻取代绿色微囊藻,铜绿微囊藻取代惠氏微囊藻,而光强变化可能调节冬季时水华鱼腥藻取代了绿色微囊藻,春季时正好是相反的取代。  相似文献   

5.
Photoinhibition of photosynthesis and its reactivation was studied in the cyanobaterium A. nidulans in the presence of the respiratory inhibitor sodium azide, the uncouplers carbonyl cyanide p -(trifluoromethoxy)-phenylhydrazone (FCCP) and carbonyl cyanide m -chlorophenylhydrazone (CCCP) and the photosystem I elicitor phenazine methosulphate (PMS). Inhibition of dark respiration by azide increased the susceptibility of the cyanobacterium to photoinhibition. Both FCCP and CCCP also remarkably affected the process of photoinhibition in A. nidulans. The PMS at lower photoinhibitory light intensity partially protected A. nidulans from photoinhibition. The recovery from photoinhibition in the presence of azide or FCCP was slow and normal photosynthesis could not be resumed even after a longer period of incubation under suitable reactivating condition. Thus dark respiration has a key function in the process of photoinhibition of photosynthesis and its reactivation in the cyanobacterium A. nidulans.  相似文献   

6.
Abstract. The similarities between the component reactions of the presently known variants of photosynthetic carbon metabolism (crassulacean acid metabolism, the acid metabolism of Tillandsia usneoides , aquatic acid metabolism, and C4 photosynthesis) when considered along with their widely scattered taxonomic distribution strongly suggest polyphyletic origins resulting from evolutionary modification of a common, universally distributed metabolic sequence. The synthesis and consumption of four-carbon acids in the cation-balancing reactions involved in the regulation of stomatal aperture appear to exhibit all of the characteristics likely to be displayed by such a metabolic progenitor.
The present status of the proposal that the expression of aspects of stomatal metabolism in photosynthetic mesophyll cells represents the basis for the evolution of the variant of photosynthetic carbon metabolism is discussed. The prospects of experimental approaches which may yield information relevant to the proposal are also explored.  相似文献   

7.
8.
The ubiquitous antioxidant thiol tripeptide glutathione is present in millimolar concentrations in plant tissues and is regarded as one of the major determinants of cellular redox homeostasis. Recent research has highlighted a regulatory role for glutathione in influencing the expression of many genes important in plants' responses to both abiotic and biotic stress. Therefore, it becomes important to consider how glutathione levels and its redox state are influenced by environmental factors, how glutathione is integrated into primary metabolism and precisely how it can influence the functioning of signal transduction pathways by modulating cellular redox state. This review draws on a number of recent important observations and papers to present a unified view of how the responsiveness of glutathione to changes in photosynthesis may be one means of linking changes in nuclear gene expression to changes in the plant's external environment.  相似文献   

9.
The effect of black bean aphids on the photosynthesis of sugar beet plants was studied under glasshouse and field conditions. The presence of up to several hundred aphids per leaf had no significant effect on CO2 exchange rates over a range of light intensities between complete darkness and light saturation. Artificially prepared honeydew, sprayed onto leaves in the same amounts and composition as was found on severely aphid-infested plants, covered 30% of the stomata on the upper epidermis but did not significantly alter the rate of photosynthesis of these leaves in the light or the rate of respiration in the dark. The stomata on the lower epidermis were uncovered and functional. High pressure liquid chromatography of aphid-produced honeydew detected 20 different amino-acids. Three amino-acids, aspartic acid, glutamic acid and gluta-mine, made up the bulk of the amino-acid weight in the honeydew produced on young plants, up till the 8 leaf-stage. In the 10 to 12 leaf-stage, several different amino-acids occurred in substantial amounts. The amino-acids to sugars ratio of the honeydew produced by the aphids decreased strongly as the sugar beet plants aged: from 1:6 in plants with 3 or 4 leaves to 1:25 in plants having 10 to 12 leaves.  相似文献   

10.
研究了剑叶金鸡菊及其伴生植物鬼针草、羊蹄幼苗的生物量分配、生长和生理特性在不同强度的光生境中(全光照和31%光照)的响应特征,探讨了这些特征与其入侵性的关系.结果表明:(1)光强是影响剑叶金鸡菊入侵的重要环境因子,高光环境下其幼苗较高的相对生长速率( RGR)和植物单位重量的光合效率(Am)与其入侵性密切相关.遮荫下,...  相似文献   

11.
D. H. Greer  W. A. Laing 《Planta》1988,174(2):159-165
Recovery of photoinhibition in intact leaves of shade-grown kiwifruit was followed at temperatures between 10° and 35° C. Photoinhibition was initially induced by exposing the leaves for 240 min to a photon flux density (PFD) of 1 500 mol·m-2·s-1 at 20° C. In additional experiments to determine the effect of extent of photoinhibition on recovery, this period of exposure was varied between 90 and 400 min. The kinetics of recovery were followed by chlorophyll fluorescence at 77K. Recovery was rapid at temperatures of 25–35° and slow or negligible below 20° C. The results reinforce those from earlier studies that indicate chilling-sensitive species are particularly susceptible to photoinhibition at low temperatures because of the low rates of recovery. At all temperatures above 15° C, recovery followed pseudo first-order kinetics. The extent of photoinhibition affected the rate constant for recovery which declined in a linear fashion at all temperatures with increased photoinhibition. However, the extent of photoinhibition had little effect on the temperature-dependency of recovery. An analysis of the fluorescence characteristics indicated that a reduction in non-radiative energy dissipation and repair of damaged reaction centres contributed about equally to the apparent recovery though biochemical studies are needed to confirm this. From an interpretation of the kinetics of photoinhibition, we suggest that recovery occurring during photoinhibition is limited by factors different from those that affect post-photoinhibition recovery.Abbreviations and symbols F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, transfer to photosystem I - K(PI), k(R) rate constants for photoinhibition and recovery - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

12.

Background and Aims

The distribution of photosynthetic enzymes, or nitrogen, through the canopy affects canopy photosynthesis, as well as plant quality and nitrogen demand. Most canopy photosynthesis models assume an exponential distribution of nitrogen, or protein, through the canopy, although this is rarely consistent with experimental observation. Previous optimization schemes to derive the nitrogen distribution through the canopy generally focus on the distribution of a fixed amount of total nitrogen, which fails to account for the variation in both the actual quantity of nitrogen in response to environmental conditions and the interaction of photosynthesis and respiration at similar levels of complexity.

Model

A model of canopy photosynthesis is presented for C3 and C4 canopies that considers a balanced approach between photosynthesis and respiration as well as plant carbon partitioning. Protein distribution is related to irradiance in the canopy by a flexible equation for which the exponential distribution is a special case. The model is designed to be simple to parameterize for crop, pasture and ecosystem studies. The amount and distribution of protein that maximizes canopy net photosynthesis is calculated.

Key Results

The optimum protein distribution is not exponential, but is quite linear near the top of the canopy, which is consistent with experimental observations. The overall concentration within the canopy is dependent on environmental conditions, including the distribution of direct and diffuse components of irradiance.

Conclusions

The widely used exponential distribution of nitrogen or protein through the canopy is generally inappropriate. The model derives the optimum distribution with characteristics that are consistent with observation, so overcoming limitations of using the exponential distribution. Although canopies may not always operate at an optimum, optimization analysis provides valuable insight into plant acclimation to environmental conditions. Protein distribution has implications for the prediction of carbon assimilation, plant quality and nitrogen demand.  相似文献   

13.
种植方式对夏玉米光合生产特征和光温资源利用的影响   总被引:5,自引:1,他引:5  
为研究套种与直播两种种植方式对夏玉米光合生产特征和光温资源利用的影响,选取郑单958和登海661为研究对象,设置3个播期,密度为67500株·hm-2,以地上干物质积累量和作物生长速率、叶面积指数、穗位叶的单叶光合速率来评价夏玉米的光合生产特征;以Richards模型拟合籽粒灌浆过程;结合气象数据计算夏玉米光能利用率.结果表明:直播处理比套种处理籽粒产量增加1.17%~3.33%(P<0.05),但千粒重显著降低;生育期随播期提前而延长;直播条件下叶面积指数和单叶光合速率在灌浆前期显著高于套种,但灌浆后期下降较快;与套种相比,直播开花前和开花后具有较高的干物质积累量和较快的作物生长速率.Richards模型解析表明,直播处理达到最大灌浆速率的时间明显早于套种,起始势较套种高,但灌浆期、活跃灌浆期和灌浆速率最大时的生长量均低于套种;与套种相比,直播处理生育期间总积温和总辐射量分别减少150~350 ℃·d和200~400 MJ·m-2,但籽粒光能利用率较套种提高10.5%~24.7%.因此,直播较套种有优势,在夏玉米大田生产条件下,重视叶片的光合生产特征,延缓叶片衰老,有利于提高夏玉米的光能利用率,进一步挖掘增产潜力.  相似文献   

14.
以切花菊品种‘神马’为试材,在偏低温弱光(16℃/12℃,PFD100μmol.m-2.s-1)和临界低温弱光(12℃/8℃,PFD60μmol.m-2.s-1)下分别胁迫11d,然后转入正常条件(22℃/18℃,PFD450μmol.m-2.s-1)恢复11d,研究不同低温弱光强度及恢复对菊花光合作用和叶绿素荧光参数的影响.结果表明:低温弱光导致菊花叶片的净光合速率(Pn)和气孔限制值(Ls)下降,而胞间CO2浓度(Ci)上升.偏低温弱光胁迫下菊花叶片暗适应下最大光化学效率(Fv/Fm)和初始荧光(Fo)无明显变化,但光适应下最大光化学效率(Fv′/Fm′)在处理前期略有下降,后期则有所回升;而临界低温弱光处理的Fo明显升高,Fv/Fm和Fv′/Fm′显著降低.PSⅡ光合电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)和表观光合电子传递速率(ETR)均随着低温弱光胁迫程度的增加和时间的延长而降低;偏低温弱光处理植株在解除胁迫后能迅速恢复到对照水平,而临界低温弱光处理植株回升速度较慢;同时,低温弱光胁迫下吸收光强用于分配光化学反应部分(Prate)的比例减少,而天线热耗散(Drate)和反应中心的能量耗散(Ex)比例上升,但天线热耗散为过剩光能的主要分配途径.  相似文献   

15.
Sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylglycerol (PG) are lipids with negative charges, distributed among membranes of chloroplasts of plants and their postulated progenitors, cyanobacteria, and also widely among membranes of anoxygenic photosynthetic bacteria. Thus, these acidic lipids are of great interest in terms of their roles in the function and evolution of the photosynthetic membranes. The physiological significance of these lipids in photosynthesis has been examined through characterization of mutants defective in their abilities to synthesize SQDG or PG, and through characterization of isolated thylakoid membranes or photosynthetic particles, the acidic lipid contents of which were manipulated in vitro, for example, on treatment with phospholipase to degrade PG. Responsibility of SQDG or PG has been clarified so far in terms of the structural and/or functional integrity of photosystems I and/or II in cyanobacterial, green algal, and higher plant species. Also implied were distinct levels of the responsibility in the different photosynthetic organisms. Extreme cases involved the indispensability of SQDG for photosynthesis and growth in two prokaryotic, photosynthetic organisms and the contribution of PG to construction of the photosystem-I trimer exclusively in cyanobacteria. Here, roles of these acidic lipids are discussed with a focus on their specificity and the evolution of photosynthetic membranes.Norihiro Sato is the recipient of the Botanical Society Award for Young Scientist, 2003.  相似文献   

16.
17.
Two-dimensional air current speeds in the culture vessel were measured using a tracer-based visualization technique and the effect of the air movement in the culture vessel on the photosynthesis of in vitro potato plantlets was assessed under a photoautotrophic culture condition. The air current speeds inside the vessel were varied by controlling free convection induced by spatial variations of temperatures in the culture vessel. For all conditions examined, upward air currents were observed around the plantlets in the central part of the culture vessel and downward air currents were observed near inside walls in the culture vessel. The upward and downward air currents were restricted by the presence of the plantlet. The upward air current speeds were affected by plantlet size inside the vessel and it was 24, 8 and 4 mm s−1 in culture vessels with no plantlets, a 10-mm-tall plantlet and a 60-mm-tall plantlet cultured inside the vessel, respectively. The upward air current speed was increased by 2 times by increasing wind velocity above the culture vessel from 0.1 to 1.0 m s−1. Placing the black plate on the medium also increased the air current speeds by 1.5 times. The net photosynthetic rates of the plantlets increased from 2.0 to 2.5 μmol m−2 s−1 as the upward air current speed in the culture vessel increased from 2.4 to 8.0 mm s−1. The air current speeds in the culture vessel were significantly slow. Enhancement of the air movement in the culture vessel is important to promote photosynthesis of the in vitro plantlets.  相似文献   

18.
 The Chenopodiaceae genus Salsola contains a large number of species with C4 photosynthesis. Along with derivative genera they have a prominent position among the desert vegetation of Asia and Africa. About 130 species from Asia and Africa were investigated to determine the occurrence of C3 versus C4 syndrome in leaves and cotyledons, and to study specific anatomical and biochemical features of photosynthesis in both photosynthetic organs. The species studied belong to all six previously identified sections of the tribe Salsoleae based on morphological characters. Types of photosynthesis were identified using carbon 13C/12C isotope fractionation. The representatives of all systematic groups were investigated for mesophyll anatomy and biochemical subtypes by determination of enzyme activity (RUBPC, PEPC, NAD- and NADP-ME and AAT) and primary photosynthetic products. Two photosynthetic types (C3 and C4) and two biochemical subtypes (NAD- and NADP-ME) were identified in both leaves and cotyledons. Both Kranz and non-Kranz type anatomy were found in leaves and cotyledons, but cotyledons had more diversity in anatomical structure. Strong relationships between anatomical types and biochemical subtypes in leaves and cotyledons were shown. We found convincing evidence for a similar pattern of structural and biochemical features of photosynthesis in leaves and cotyledons within systematic groups, and evaluated their relevance at the evolutionary level. We identified six groups in tribe Salsoleae with respect to photosynthetic types and mesophyll structure in leaves and cotyledons. Two separate lineages of biochemical and anatomical evolution within Salsoleae were demonstrated based on studies of leaves and cotyledons. The sections Caroxylon, Malpighipila, Cardiandra and Belanthera have no C3 species and only the NAD-ME C4 subtype has been found in leaves. We suggest the C4 species in the NADP-ME lineage evolved in Coccosalsola and Salsola sections, and originated in the subsection Arbuscula. Coccosalsola contains many species with C3 and/or C3-C4 intermediate photosynthesis. Within these main evolutionary lineages, species of different taxonomic groups (sections and subsections) had differences in anatomical or/and biochemical features in leaves and cotyledons. We conclude that structural and biochemical changes in the photosynthetic apparatus in species of the tribe Salsoleae were a key factor in their evolution and broad distribution in extreme desert environments. Received January 25, 2001 Accepted July 17, 2001  相似文献   

19.
Summary Norway spruce, Picea abies (L.) Karst., was exposed to charcoal-filtered air (CF) and non-filtered air + ozone (NF+) and periods of soil moisture deficit from 1985 to 1988 in open-top chambers. Net photosynthesis, stomatal conductance, needle water potential and various shoot properties were measured on 1-year-old shoots during a period of soil moisture deficit. The gas exchange was measured at saturating photosynthetic photon flux density and across a range of CO2 concentrations. The soil moisture deficit induced a mild drought stress in the plants, expressed by a pre-dawn needle water potential of approximately-0.9 MPa and a substantial reduction in net photosynthesis and gas phase conductance. In the CF treatment, intercellular CO2 concentration was reduced, but was unaffected in the NF+ treatment. Furthermore, net photosynthesis declined more in response to the soil moisture deficit in the NF+ treatment than in the CF treatment. This is suggested to be attributed to the carboxylation efficiency at the operating point, which was decreased by 47% and 64% in shoots from the CF and the NF+ treatments, respectively. Stomatal limitation of net photosynthesis was increased by drought by 24–45% in the CF treatment, while it was unaffected in the NF+ treatment. Thus, our results imply that the coupling between the stomatal conductance and the photosynthetic rate was changed and that the marginal cost of water per given amount of carbon gain will increase in trees exposed to ozone, during periods of drought.  相似文献   

20.
Proton nmr spectroscopic evidence is presented for methylmercury(II) binding to the deprotonated amino groups in adenosine, 9-methyladenine, guanosine, 1-methylguanosine, and cytidine under basic conditions. Except for the guanosine case, 1H nmr spectra of the products from aqueous or ethanolic 1:1 mixtures of substrate and MeHgOH are consistent with methylmercuration of the deprotonated amino groups. Guanosine undergoes initial binding of MeHg to N1, and a second equivalent of MeHgOH is necessary to effect amino binding. The nmr spectra of the complexed adenine derivatives suggest that different geometrical isomers exist in (CD3)2SO solution, reflecting the partial double bond character of the C6N bond in these systems. Using a correlation relating the magnitude of the 199Hg-1H coupling constant (J) for MeHg-ligand complexes with the ligand pKa (J = ?3.88 pKa + 248.5, extending over 13 pK units, based on a variety of N and O donor ligands), estimates (± 0.3 pK unit) of the pKas of the amino groups of the above substrates have been made. In this way, pKa values of 15.5 (cytidine), 17.0 (adenosine and 9-methyladenine), 15.1 (guanosine), and 14.9 (1-methylguanosine) are obtained. In the cases where comparisons with literature pKa data can be made, good agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号