首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Development and optimization of an adenovirus production process   总被引:1,自引:0,他引:1  
Adenoviral vectors have a number of advantages such as their ability to infect post-mitotic tissues. They are produced at high titers and are currently used in 28% of clinical protocols targeting mainly cancer diseases through different strategies. The major disadvantages of the first generation of recombinant adenoviruses are addressed by developing new recombinant adenovirus vectors with improved capacity and safety and reduced inflammatory response. To meet increasing needs of adenovirus vectors for gene therapy programs, parallel development of efficient, scalable and reproducible production processes is required. HEK-293 complementing cell line physiology, metabolism and viral infection kinetics were studied at small scale to identify optimal culture conditions. Batch, fed-batch and perfusion culture modes were evaluated. Development of new monitoring tools (in situ GFP probe) and quantification techniques (HPLC determination of total viral particles) contributed to acceleration of process development. On-line monitoring of physiological parameters such as respiration and biovolume of the culture allowed real-time supervision and control of critical phases of the process. Use of column chromatographic steps instead of CsCl gradient purification greatly eased process scale-up. The implementation of the findings at large scale led to the development of an optimized and robust integrated process for adenovirus production using HEK-293 cells cultured in suspension and serum-free medium. The two-step column-chromatography purification was optimized targeting compliance with clinical material specifications. The complete process is routinely operated at a 20-L scale and has been scaled-up to 100 L. Scale-up of adenoviral vector production in suspension and serum-free medium, and purification according to regulatory requirements, are achievable. To overcome metabolic limitations at high cell densities, use of perfusion mode with low-shear cell retention devices is now a common trend in adenovirus manufacturing. Further process improvements will rely on better understanding of the mechanisms of virus replication and maturation in complementing host cells.  相似文献   

3.
Retroviral vectors for human gene delivery   总被引:7,自引:0,他引:7  
The potential for gene therapy to cure a wide range of diseases has lead to high expectations and a great increase in research efforts in this area. At present, viral vectors are the most efficient means of delivering a corrective gene into human cells. While a number of different viral vectors are under development, retroviral vectors are currently the most common type used in clinical trials today. However, the production of retroviral vectors for gene therapy applications faces a number of challenges. Of primary concern is the low titre of vector stocks produced by packaging cells in culture and the inherent instability of retroviral vector activity. The problems facing large-scale retroviral vector production are outlined in this review and the research efforts by a number of groups who have attempted to optimise production methods are presented.  相似文献   

4.
腺病毒载体是最早用于基因治疗研究的病毒载体之一,也是目前肿瘤基因治疗中最为常见的病毒载体之一,其主要通过靶细胞表面的天然柯萨奇腺病毒受体(coxsackie and adenovirus receptor,CAR)感染宿主细胞。由于大多数肿瘤细胞表面该受体表达水平较低,降低了腺病毒载体对靶细胞的感染效率,从而制约了腺病毒载体在肿瘤基因治疗中的应用。因此,如何提高腺病毒载体对靶细胞的感染效率是腺病毒载体应用于肿瘤基因治疗的关键。目前对腺病毒载体衣壳蛋白质(capsid protein)的遗传修饰是提高其对宿主细胞感染效率的主要途径。本文将对这一领域的主要研究进展作一综述,为该方面的研究提供有用的信息。  相似文献   

5.
BACKGROUND: Ex vivo gene therapy of acute myeloid leukemia (AML) requires efficient transduction of leukemic cells. Recombinant adenovirus has been reported to be a poorly efficient vector in leukemic cells. We investigated leukemic cell culture as a possible method of improving the efficacy of this vector. METHODS: Leukemic cell lines and primary cultured AML cells were incubated with adenoviral vectors carrying GFP, LacZ, or IL-12 cDNA. Transduction efficiency was evaluated by measuring adenoviral genome copy number and transgene expression in leukemic cells. The expression of the coxsackie/adenovirus receptor (CAR), CD29, CD49e, and CD51/61 was measured, as was the effect of blocking integrin on adenoviral transduction. RESULTS: Increasing the multiplicity of infection (MOI) to 300 plaque-forming units per cell enhanced transduction of leukemic cell lines and to a lesser degree of AML cells. Analysis of adenoviral genome copy per cell showed only a partial correlation between gene transfer efficiency and transgene expression. Culture of AML cells for 3 days prior to adenoviral transduction increased both adenoviral copy number per cell and the percentage of transgene-expressing cells. CD29, CD49e, and CD51/61 but not CAR expression increased in cultured AML cells between days 0 and 3 and integrin-blocking experiments showed inhibition of transduction in two of four AML samples tested. CONCLUSIONS: Efficient ex vivo gene transfer in primary cultured AML cells can be achieved by short-term culture of leukemic cells prior to gene transfer with adenoviral vectors at a high MOI. This effect appears to be at least partially mediated by enhanced integrin expression.  相似文献   

6.
Mesenchymal stem cell (MSC) mediated gene therapy research has been conducted predominantly on rodents. Appropriate large animal models may provide additional safety and efficacy information prior to human clinical trials. The objectives of this study were: (a) to optimize adenoviral transduction efficiency of porcine bone marrow MSCs using a commercial polyamine-based transfection reagent (GeneJammer, Stratagene, La Jolla, CA), and (b) to determine whether transduced MSCs retain the ability to differentiate into mesodermal lineages. Porcine MSCs (pMSCs) were infected under varying conditions, with replication-defective adenoviral vectors carrying the GFP gene and GFP expression analyzed. Transduced cells were induced to differentiate in vitro into adipogenic, chondrogenic, and osteogenic lineages. We observed a 5.5-fold increase in the percentage of GFP-expressing pMSCs when adenovirus type 5 carrying the adenovirus type 35 fiber (Ad5F35eGFP) was used in conjunction with GeneJammer. Transduction of pMSCs at 10.3-13.8 MOI (1,500-2,000 vp/cell) in the presence of Gene Jammer yielded the highest percentage of GFP-expressing cells ( approximately 90%) without affecting cell viability. A similar positive effect was detected when pMSCs were infected with an Ad5eGFP vector. Presence of fetal bovine serum (FBS) during adenoviral transduction enhanced vector-encoded transgene expression in both GeneJammer-treated and control groups. pMSCs transduced with adenovirus vector in the presence of GeneJammer underwent lipogenic, chondrogenic, and osteogenic differentiation. Addition of GeneJammer during adenoviral infection of pMSCs can revert the poor transduction efficiency of pMSCs while retaining their pluripotent differentiation capacity. GeneJammer-enhanced transduction will facilitate the use of adenoviral vectors in MSC-mediated gene therapy models and therapies.  相似文献   

7.
8.
Safety requirements for adenoviral gene therapy protocols have led to the development of the third generation of vectors commonly called helper-dependent adenoviral vectors (HDVs). HDVs have demonstrated a high therapeutic potential; however, the poor efficiency and reliability of the actual production process hampers further large-scale clinical evaluation of this new vector. The current HDV production methods involve a preliminary rescue step through transfection of adherent cell cultures by an HDV plasmid followed by a helper adenovirus (HV) infection. Amplification by serial co-infection of complementary cells allows an increase in the HDV titer. Using a HEK293 FLP/frt cell system in suspension culture, an alternative protocol to the current transfection/infection procedure was evaluated. In this work, the adenofection uses the HDV plasmid linked to the HV with the help of polyethylenimine (PEI) and has shown to outperform standard protocols by producing higher HDV yield. The influence of complex composition on the HDV production was examined by a statistical design. The optimized adenofection and amplification conditions were successively performed to generate HDV at the 3 L bioreactor scale. Following only two serial co-infection passages, up to 1.44 x 10(8) HDV infectious units/mL of culture were generated, which corresponded to 26% of the total particles produced. This production strategy, realized in cell suspension culture, reduced process duration and therefore the probability of vector recombination by introducing a cost-effective transfection protocol, ensuring production of high-quality vector stock.  相似文献   

9.
NGR(Asn-Gly-Arg)是通过噬菌体展示技术筛选出来的能够和肿瘤新生血管特异结合的三肽模体,可以将多种药物分子和病毒载体靶向运输到肿瘤或者进行血管再生的组织中。为此构建了腺病毒衣壳蛋白knob的HI环(HI-loop)经NGR肽段修饰的并同时表达三种报告基因的腺病毒载体Ad5/E1-mCherry/E3-luciferase-2A-eGFP/knob-NGR。体内、外实验研究表明,该病毒载体可成功表达三种报告基因;经NGR肽段修饰的腺病毒载体对人乳腺癌细胞系MDA-MB-231的感染效率高于未经修饰的对照腺病毒Ad5CMVeGFP。该载体的成功构建为进一步研究经NGR肽段修饰的腺病毒在肿瘤动物模型体内的靶向性及经NGR肽段修饰的并携带治疗基因的实验治疗研究奠定了基础。  相似文献   

10.
A novel method for the production of adenoviral vectors on a scale sufficient to support most research applications and early phase clinical trials is presented. This method utilizes serum-free cell culture medium and a hollow fiber cell culture apparatus. Significantly less time and space are required than in conventional methods, and the resulting adenovirus is collected in a much smaller volume, simplifying the purification steps. The protocol described is a reproducible, convenient, biologically safe, and environmentally sound method for the production of adenoviral vectors for laboratory use and has the potential to scale-up the adenovirus production for clinical use.  相似文献   

11.
Gene transfer technology has spawned an entire realm of clinical investigation, collectively referred to as "gene therapy." The feasibility and achievements of gene therapy to prevent and treat glucose homeostasis disorders, with particular emphasis on diabetes mellitus, are evaluated in this review. While a considerable amount of effort has yielded gene delivery vectors based on adenoviral, retroviral, and herpes simplex virus DNA, the number of successful clinical applications has not been as impressive. Despite the number of successes in vitro and in animal models, preliminary safety trials in humans have not yet been attempted. The current state of this science, outlined here, underlines the necessity of marrying gene transfer technology with cell therapy. The ex vivo transfer of gene combinations into a variety of cell types will likely prove more therapeutically feasible than direct in vivo vector transfer. Current efforts aimed at assessing the future of gene therapy for diabetes must, at the very least, take into account the importance of moving successful methods into human safety trials.  相似文献   

12.
Adenoviral vectors are widely used for cancer therapy and show a tumor-suppressing effect. However, bladder cancers are found to be resistant against infection of Ad5-derived adenoviral vector, limiting the application of the existing strategy of gene therapy. Therefore, efforts to develop novel types of adenoviral vector aimed for improving the viral infection and enhancing expression level of tumor-inhibiting transgene is urgently required. We constructed a 5/35 fiber-modified E1A-deleted adenoviral vector armed with TRAIL gene. Its ability to express this gene for inhibition of bladder cancer cell growth was investigated in our work. The results showed that this modification in fiber region facilitates adenoviral infection to bladder cancer, perhaps due to high expression of CD46 on target cell surface. Subsequently, we found an enhanced expression level of TRAIL mediated by 5/35 fiber-modified adenoviral vectors in bladder cancer cells, leading to an increased tumor-inhibiting capability of 5/35 adenoviral vector against bladder cancer cells. Consistently, growth of xenograft tumors in mice was also effectively inhibited by 5/35 fiber-modified vector-mediated gene therapy strategy. The 5/35 fiber-modified adenoviral vector-based gene transfer shows an improved efficacy against bladder cancers. The application of this novel gene therapy vector may benefit the patients in clinical bladder cancer treatment.  相似文献   

13.
Gene therapy is emerging as a treatment option for inherited genetic diseases. The success of this treatment approach greatly depends upon gene delivery vectors. Researchers have attempted to harness the potential of viral vectors for gene therapy applications over many decades. Among the viral vectors available, gutless adenovirus (GLAd) has been recognized as one of the most promising vectors for in vivo gene delivery. GLAd is constructed by deleting all the viral genes from an adenovirus. Owing to this structural feature, the production of GLAd requires a helper that supplies viral proteins in trans. Conventionally, the helper is an adenovirus. Although the helper adenovirus efficiently provides helper functions, it remains as an unavoidable contaminant and also generates replication-competent adenovirus (RCA) during the production of GLAd. These two undesirable contaminants have raised safety concerns and hindered the clinical applications of GLAd. Recently, we developed helper virus-free gutless adenovirus (HF-GLAd), a new version of GLAd, which is produced by a helper plasmid instead of a helper adenovirus. Utilization of this helper plasmid eliminated the helper adenovirus and RCA contamination in the production of GLAd. HF-GLAd, devoid of helper adenovirus and RCA contaminants, will facilitate its clinical applications. In this review, we discuss the characteristics of adenoviruses, the evolution and production of adenoviral vectors, and the unique features of HF-GLAd as a new platform for gene therapy. Furthermore, we highlight the potential applications of HF-GLAd as a gene delivery vector for the treatment of various inherited genetic diseases.  相似文献   

14.
Recombinant adenoviruses are efficient gene delivery vectors that are being evaluated in many gene therapy and vaccine applications. Methods for rapid production of ca. 10(12)-10(13) virus particles (VPs) are desired to enable rapid initial evaluation of such vectors. For this purpose, a scalable transfection procedure was developed for production of an adenovirus type 5 vector expressing HIV-1 gag gene (MRKAd5gag). Adherent PER.C6 cells were transfected by calcium phosphate coprecipitation of the linearized, 36 kb adenovirus plasmid in disposable culture vessels. Various process variables including precipitate formation time, DNA concentration, and harvest time were investigated to rapidly achieve desired virus yields using an adenovirus plasmid encoding the green fluorescent protein (pAd5gfp). Using an optimized procedure, consistent production of >5 x 10(10) VPs per 1-tray Nunc cell factory (NCF) with a ratio of infectious units to virus particles of >1:10 was obtained for the MRKAd5gag vector. This scaleable process can be used to produce adenoviral vectors using several 1-tray NCFs or a single multiple-tray NCF within 1 month from the time of plasmid construction.  相似文献   

15.
A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy.  相似文献   

16.
In gene therapy, retrovirus and adenovirus vectors are extensively used as gene-delivery vehicles and further large-scale processing of these viral vectors will be increasingly important. This study examined stationary and microcarrier cell culture systems with respect to the production of a retrovirus vector (encoding a monounit hammerhead ribozyme gene with an intron) and an adenovirus vector (encoding a reporter lacZ gene). Cytodex 1 and Cytodex 3 solid microcarriers were found to be able to provide good cell growth and high-titer vector production in suspension cultures. Porous microcarriers such as Cytopore 2 gave slightly lower but still efficient growth but produced significantly lower titers of retrovirus and adenovirus vector from the producer cells. The specific retrovirus production was not proportionally related to the specific growth rate of the producer cells. High MOI infection was essential for high-titer production of adenovirus vector in 293 cells. Hydrodynamic shear forces on microcarrier-grown cells increased the production yield for retrovirus vector but decreased for adenovirus vector. The cellular productivity was much more efficient for adenovirus vector produced in 293 cells as compared to the retrovirus vector produced in PA317-RCM1 cells. These findings can provide further insight into the feasibility of applying microcarrier cell culture technology to produce gene-therapy virus vectors.  相似文献   

17.
BACKGROUND: The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed. METHODS: Adenoviral vectors expressing VSV-G, codon-optimized HIV-1 gag-pol, and codon-optimized SIV gag-pol under the control of a tetracycline-regulatable promoter (adenoviral lenti-pack vectors) were constructed and the production levels of this vector system were evaluated. RESULTS: The generated adenoviral lenti-pack vectors could be grown to high titers when transgene expression was suppressed and no evidence for instabilities was obtained. Cells stably transfected with a SIV-based vector construct were converted into lentiviral vector producer cells by infection with the adenoviral lenti-pack vectors. Lentiviral vector titers obtained were as high as vector titers obtained by transient cotransfection experiments. A protocol was developed that allowed preparation of lentiviral vector stocks with undetectable levels of contaminating adenoviral lenti-pack vectors. CONCLUSIONS: The adenoviral lenti-pack vectors described should provide a convenient alternative approach to inducible packaging cell lines for large-scale lentiviral vector production. Transient expression of cytotoxic lentiviral packaging genes by the adenoviral lenti-pack vectors circumvents loss of titers during prolonged culture of packaging cell lines. The design of the adenoviral lenti-pack vectors should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the lentiviral vector constructs that can be packaged.  相似文献   

18.
Due to the very efficient nuclear entry mechanism of adenovirus and its low pathogenicity for humans, adenovirus-based vectors have become gene delivery vehicles that are widely used for transduction of different cell types, especially for quiescent, differentiated cells, in basic research, in gene therapy applications, and in vaccine development. As an important basis for their use as gene medicine, adenoviral vectors can be produced in high titers, they can transduce cells in vivo with transgenes of more than 30 kb, and they do not integrate into the host cell genome. Recent advances in the development of adenoviral vectors have brought considerable progress on issues like target cell specificity and tropism modification, long-term expression of the transgene, as well as immunogenicity and toxicity in vivo, and have suggested that the different generations of non-replicative and replicative vectors available today will each suit best for certain applications.  相似文献   

19.
Both transfection and adenovirus vectors are commonly used in studies measuring gene expression. However, the real DNA copy number that is actually transduced into target cells cannot be measured using quantitative PCR because attached DNA present on the cell surface is difficult to distinguish from successfully transduced DNA. Here, we used Cre/loxP system to show that most of the transfected DNA was in fact attached to the cell surface; in contrast, most of the viral vector DNA used to infect the target cells was present inside the cells after the cells were washed according to the conventional infection protocol. We applied this characteristic to adenoviral vector titration. Current methods of vector titration using the growth of 293 cells are influenced by the effect of the expressed gene product as well as the cell conditions and culture techniques. The titration method proposed here indicates the copy numbers introduced to the target cells using a control vector that is infected in parallel (relative vector titer: rVT). Moreover, the new titration method is simple and reliable and may replace the current titration methods of viral vectors.  相似文献   

20.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号