首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Airway basal cells (BC) function as stem/progenitor cells capable of differentiating into the luminal ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with γ-secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secretory and ciliated cells, but more so for the secretory lineage. Sustained cell autonomous ligand independent Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the NOTCH2 and 4 pathways have little effect on BC differentiation into secretory and ciliated cells, while activation of the NOTCH1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.  相似文献   

3.
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells.  相似文献   

4.
The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5‐GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi‐colored reporter demonstrated that Notch‐activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD‐induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper‐proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.  相似文献   

5.
6.
Notch signaling is a conserved cell fate regulator during development and postnatal tissue regeneration. Using skeletal muscle satellite cells as a model and through myogenic cell lineage-specific NICD(OE) (overexpression of constitutively activated Notch 1 intracellular domain), here we investigate how Notch signaling regulates the cell fate choice of muscle stem cells. We show that in addition to inhibiting MyoD and myogenic differentiation, NICD(OE) upregulates Pax7 and promotes the self-renewal of satellite cell-derived primary myoblasts in culture. Using MyoD(-/-) myoblasts, we further show that NICD(OE) upregulates Pax7 independently of MyoD inhibition. In striking contrast to previous observations, NICD(OE) also inhibits S-phase entry and Ki67 expression and thus reduces the proliferation of primary myoblasts. Overexpression of canonical Notch target genes mimics the inhibitory effects of NICD(OE) on MyoD and Ki67 but not the stimulatory effect on Pax7. Instead, NICD regulates Pax7 through interaction with RBP-Jκ, which binds to two consensus sites upstream of the Pax7 gene. Importantly, satellite cell-specific NICD(OE) results in impaired regeneration of skeletal muscles along with increased Pax7(+) mononuclear cells. Our results establish a role of Notch signaling in actively promoting the self-renewal of muscle stem cells through direct regulation of Pax7.  相似文献   

7.
8.
Notch signaling has been recently shown to have a fundamental role in stem cell maintenance and control of proper homeostasis in the intestine of different species. Here, we briefly review the current literature on Notch signals in the intestine of Drosophila, Zebrafish and the mouse, and try to highlight conserved and divergent Notch functions across species. Notch signals show a remarkably conserved role in skewing cell fate choices in intestinal lineages throughout evolution. Genetic analysis demonstrates that loss of Notch signaling invariably leads to increased numbers of secretory cells and loss of enterocytes, while gain of Notch function will completely block secretory cell differentiation. Finally, we discuss the potential contribution of Notch signaling to the initiation of colorectal cancer by controlling the maintenance of the undifferentiated state of intestinal neoplastic cells and speculate on the therapeutic consequences of affecting cancer stem cells.  相似文献   

9.
The Notch-Delta signaling pathway controls many conserved cell determination events. While the Notch end is fairly well characterized, the Delta end remains poorly understood. Mind bomb1 (MIB1) is one of two E3 ligases known to ubiquitinate Delta. We report here that a targeted mutation of Mib1 in mice results in embryonic lethality by E10.5. Mutants exhibit multiple defects due to their inability to modulate Notch signaling. As histopathology revealed a strong neurogenic phenotype, this study concentrates on characterizing the Mib1 mutant by analyzing Notch pathway components in embryonic neuroepithelium prior to developmental arrest. Premature neurons were observed to undergo apoptosis soon after differentiation. Aberrant neurogenesis is a direct consequence of lowered Hes1 and Hes5 expression resulting from the inability to generate Notch1 intracellular domain (NICD1). We conclude that MIB1 activity is required for S3 cleavage of the Notch1 receptor. These results have direct implications for manipulating the differentiation of neuronal stem cells and provide a putative target for the modulation of specific tumors.  相似文献   

10.
The Notch signaling pathway is essential for embryonic development, organogenesis, and tissue homeostasis. Aberrant Notch signaling is associated with several types of cancers. The active form of Notch receptor is its intracellular domain (NICD), which is released from the cell membrane by serial proteolytic cleavages following ligand binding. Dose-dependent effects of NICD on cellular phenotypes have been observed under several conditions although the underlying mechanisms have not been well studied. Moreover, there are four mammalian Notch paralogs that have redundant as well as unique functions. The molecular basis for this variability is also not well understood. In this study, we used size exclusion chromatography to examine the overall distribution of NICD among NICD-containing protein complexes under conditions of increasing NICD abundance. We found that the assembly of NICD protein complexes was dose-dependent and that the abundance of the canonical complex was limited by, MAML, one of the proteins involved in the formation of canonical NICD transactivation complex, which became saturated with increasing NICD abundance. In addition, N4ICD showed a unique elution profile among the four NICDs. These results help to explain the dose-dependent and paralog-specific activities of NICD. These results are informative for the development of new reagents to block Notch signaling for therapeutic benefit.  相似文献   

11.
MicroRNAs (miRNAs) are 19-25 nucleotide RNAs that regulate messenger RNA translation and stability. Recently, we performed a conditional knockout (CKO) of the miRNA-processing enzyme Dicer during mouse retinal development and showed an essential role for miRNAs in the transition of retinal progenitors from an early to a late competence state (Georgi and Reh [2010]: J Neurosci 30:4048-4061). Notably, Dicer CKO progenitors failed to express Ascl1 and generated ganglion cells beyond their normal competence window. Because Ascl1 regulates multiple Notch signaling components, we hypothesized that Notch signaling is downregulated in Dicer CKO retinas. We show here that Notch signaling is severely reduced in Dicer CKO retinas, but that retinal progenitors still retain a low level of Notch signaling. By increasing Notch signaling in Dicer CKO progenitors through constitutive expression of the Notch intracellular domain (NICD), we show that transgenic rescue of Notch signaling has little effect on the competence of retinal progenitors or the enhanced generation of ganglion cells, suggesting that loss of Notch signaling is not a major determinant of these phenotypes. Nevertheless, transgenic NICD expression restored horizontal cells, suggesting an interaction between miRNAs and Notch signaling in the development of this cell type. Furthermore, while NICD overexpression leads to robust glial induction in control retinas, NICD overexpression was insufficient to drive Dicer-null retinal progenitors to a glial fate. Surprisingly, the presence of transgenic NICD expression did not prevent the differentiation of some types of retinal neurons, suggesting that Notch inactivation is not an absolute requirement for the initial stages of neuronal differentiation.  相似文献   

12.

Background

There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood.

Methodology/Principal Findings

We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling.

Conclusions/Significance

In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.  相似文献   

13.
Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and vascular function in zebrafish embryos.  相似文献   

14.
15.
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.  相似文献   

16.
Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.  相似文献   

17.
Notch signaling pathway enhances neural stem cell characters and regulates cell fate decisions during neural development. Interestingly, besides Notch, other γ-secretase substrates such as APP, LRP2, and ErbB4 have also proven to have biological functions in neural development. We designed a unique experimental setting, combining gain-of- (expression of Notch intracellular domain, NICD) and loss-of-function (γ-secretase inhibition) methods, and were able to examine the function of Notch alone by excluding the activity of other γ-secretase substrates. Here, we show that the frequency and size of neurospheres generated from embryonic neural stem cells (NSCs) significantly decreased by 62.7% and 37.2%, respectively, in the presence of γ-secretase inhibitor even when NICD was expressed. Under the condition of differentiation, however, the γ-secretase inhibitor treatment did not influence the promotion of astrogenesis at the expense of neurogenesis by NICD. These results indicate that other γ-secretase substrate(s) along with Notch are important in the maintenance of the stemness of NSCs, but that Notch alone can sufficiently inhibit neurogenesis without the action of the other γ-secretase substrates during differentiation.  相似文献   

18.
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3′-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5 dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号