首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human procathepsin S and cathepsin S were expressed as inclusion bodies in Escherichia coli. Following solubilization of the inclusion body proteins, fractional factorial protein folding screens were used to identify folding conditions for procathepsin S and cathepsin S. A primary folding screen, including eight factors each at two levels, identified pH and arginine as the main factors affecting procathepsin S folding. In a second simple screen, the yields were further improved. The in vitro folding of mature cathepsin S has never been reported previously. In this study we used a series of fractional factorial screens to identify conditions that enabled the active enzyme to be generated without the prodomain although the yields were much lower than achieved with procathepsin S. Our data show the power of fractional factorial screens to rapidly identify folding conditions even for a protein that does not easily fold into its active conformation.  相似文献   

2.
The preparation of proteins for structural and functional analysis using the Escherichia coli expression system is often hampered by the formation of insoluble intracellular protein aggregates (inclusion bodies). Transferring those proteins into their native states by in vitro protein folding requires screening for the best buffer conditions and suitable additives. However, it is difficult to assess the success of such a screen if no biological assay is available. We established a fully automated folding screen and a system to detect folded protein that is based on analytical hydrophobic interaction chromatography and tryptophan fluorescence spectroscopy. The system was evaluated with two model enzymes (carbonic anhydrase II and malate dehydrogenase), and was successfully applied to the folding of the p22 subunit of human dynactin, which is expressed in inclusion bodies in E. coli. The described screen allows for high-throughput folding analysis of inclusion body proteins for structural and functional analyses.  相似文献   

3.
Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni–NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.  相似文献   

4.
A recurring obstacle for structural genomics is the expression of insoluble, aggregated proteins. In these cases, the use of alternative salvage strategies, like in vitro refolding, is hindered by the lack of a universal refolding method. To overcome this obstacle, fractional factorial screens have been introduced as a systematic and rapid method to identify refolding conditions. However, methodical analyses of the effectiveness of refolding reagents on large sets of proteins remain limited. In this study, we address this void by designing a fractional factorial screen to rapidly explore the effect of 14 different reagents on the refolding of 33 structurally and functionally diverse proteins. The refolding data was analyzed using statistical methods to determine the effect of each refolding additive. The screen has been miniaturized for automation resulting in reduced protein requirements and increased throughput. Our results show that the choice of pH and reducing agent had the largest impact on protein refolding. Bis-mercaptoacetamide cyclohexane (BMC) and tris (2-carboxyethylphosphine) (TCEP) were superior reductants when compared to others in the screen. BMC was particularly effective in refolding disulfide-containing proteins, while TCEP was better for nondisulfide-containing proteins. From the screen, we successfully identified a positive synergistic interaction between nondetergent sulfobetaine 201 (NDSB 201) and BMC on Cdc25A refolding. The soluble protein resulting from this interaction crystallized and yielded a 2.2 Angstroms structure. Our method, which combines a fractional factorial screen with statistical analysis of the data, provides a powerful approach for the identification of optimal refolding reagents in a general refolding screen.  相似文献   

5.
Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins.  相似文献   

6.
The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence.  相似文献   

7.
Specialized proteins known as molecular chaperones bind transiently to non-native conformational states of proteins and protein complexes to promote transition to a biologically active conformation. Recently, it was demonstrated in vitro that proteins do not uniquely possess this activity. We show that mitochondrial 12S and 16S ribosomal RNA can fold chemically denatured proteins and reactivate heat-induced aggregated proteins in vitro. This chaperone action is ATP-independent. The specific secondary structure of the mitochondrial rRNA is critical to its folding activity. Furthermore, mutant mitochondrial 16S rRNA from aged cardiac muscle cells lacked this activity. We propose that mitochondrial 12S and 16S ribosomal RNA may play an important role in protein folding in mitochondria.  相似文献   

8.
C D Lindsay  R H Pain 《Biochemistry》1991,30(37):9034-9040
The in vitro folding and assembly of penicillin acylase (EC 3.5.1.11) (PA) to active enzyme has been studied. PA is a large bacterial protein (Mr = 86,000) comprising two peptides, alpha and beta, produced by proteolytic processing and activation of a 92-kDa precursor. Proteins that result from proteolytic processing are characteristically difficult if not impossible to refold. Different factors that affect folding and assembly of PA, including pH, ionic strength, and temperature, have been studied. Yields of 60% can be obtained, based on recovery of enzyme activity, together with another 20% of folded and associated monomer with conformation closely similar to that of the active enzyme but with the active site not formed. Evidence is presented for in vitro assembly proceeding via initial folding of the N-terminal alpha-peptide with subsequent collapse of the transiently folded beta-chain on to the surface of the former. A slow process of rearrangement follows association in vitro. Competition experiments support the proposal that the linker endopeptide in the precursor serves to increase the probability of productive collision between folded alpha- and beta-peptides. The effect of raised temperature is to interfere with the folding of the alpha-peptide, thus preventing proper folding of the precursor. This finding accounts for the basis of the temperature regulation of PA production in vivo.  相似文献   

9.
While it is clear that many unfolded proteins can attain their native state spontaneously in vitro, the efficiency of such folding is usually limited to conditions far removed from those encountered within cells. Two properties of the cellular environment are expected to enhance strongly the propensity of incompletely folded polypeptides to misfold and aggregate: the crowding effect caused by the high concentration of macromolecules, and the close proximity of nascent polypeptide chains emerging from polyribosomes. However, in the living cell, non-productive protein folding is in many, if not most, cases prevented by the action of a highly conserved set of proteins termed molecular chaperones. In the cytoplasm, the Hsp70 (heat-shock protein of 70 kDa) and chaperonin families of molecular chaperones appear to be the major contributors to efficient protein folding during both normal conditions and adverse conditions such as heat stress. Hsp70 chaperones recognize and shield short, hydrophobic peptide segments in the context of non-native polypeptides and probably promote folding by decreasing the concentration of aggregation-prone intermediates. In contrast, the chaperonins interact with and globally enclose collapsed folding intermediates in a central cavity where efficient folding can proceed in a protected environment. For a number of proteins, folding requires the co-ordinated action of both of these molecular chaperones.  相似文献   

10.
11.
The formation of native disulfide bonds during in vitro protein folding can be limiting in obtaining biologically active proteins. Thus, optimization of redox conditions can be critical in maximizing the yield of renatured, recombinant proteins. We have employed a folding model, that of the beta subunit of human chorionic gonadotropin (hCG- beta), to investigate in vitro oxidation conditions that facilitate the folding of this protein, and have compared the in vitro rates obtained with the rate of folding that has been observed in intact cells. Two steps in the folding pathway of hCG-beta were investigated: the rate-limiting events in the folding of this protein, and the assembly of hCG-beta with, hCG-alpha. The rates of these folding events were determined with and without protein disulfide isomerase (PDI) using two different types of redox reagents: cysteamine and its oxidized equivalent, cystamine, and reduced and oxidized glutathione. Rates of the rate-limiting folding events were twofold faster in cysteamine/cystamine redox buffers than in glutathione buffers in the absence of PDI. Optimal conditions for hCG-beta folding were attained in a 2 mM glutathione buffer, pH 7.4, that contained 1 mg/mL PDI and in 10muM cysteamine/cystamine, pH 8.7, without PDI. Under these conditions, the half-time of the ratelimiting folding event was 16 to 20 min and approached the rate observed in intact cells (4 to 5 min). Moreover, folding of the beta subunit under these conditions yields a functional protein, based on its ability to assemble with the alpha subunit. The rates of assembly of hCG-beta with hCG-alpha in the cysteamine/cystamine or glutathione/PDI redox buffers were comparable (t(1/2/sb> = 9 to 12 min)). These studies show that rates of folding and assembly events that involve disulfide bond formation can be optimized by a simple buffer system composed of cysteamine and cystamine. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
Lu HM  Liang J 《Proteins》2008,70(2):442-449
To study protein nascent chain folding during biosynthesis, we investigate the folding behavior of models of hydrophobic and polar (HP) chains at growing length using both two-dimensional square lattice model and an optimized three-dimensional 4-state discrete off-lattice model. After enumerating all possible sequences and conformations of HP heteropolymers up to length N = 18 and N = 15 in two and three-dimensional space, respectively, we examine changes in adopted structure, stability, and tolerance to single point mutation as the nascent chain grows. In both models, we find that stable model proteins have fewer folded nascent chains during growth, and often will only fold after reaching full length. For the few occasions where partial chains of stable proteins fold, these partial conformations on average are very similar to the corresponding parts of the final conformations at full length. Conversely, we find that sequences with fewer stable nascent chains and sequences with native-like folded nascent chains are more stable. In addition, these stable sequences in general can have many more point mutations and still fold into the same conformation as the wild type sequence. Our results suggest that stable proteins are less likely to be trapped in metastable conformations during biosynthesis, and are more resistant to point-mutations. Our results also imply that less stable proteins will require the assistance of chaperone and other factors during nascent chain folding. Taken together with other reported studies, it seems that cotranslational folding may not be a general mechanism of in vivo protein folding for small proteins, and in vitro folding studies are still relevant for understanding how proteins fold biologically.  相似文献   

13.
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.  相似文献   

14.
The biotechnology of recombinant protein production is now entering its most advanced stage, and the growth of industrial protein pharmaceuticals provides solid proof of this evolution. However, the systematic conversion of genetic information into a biologically active protein is constantly confronted by the fundamental problem of protein folding in cells, and many recombinant proteins are not produced in their native state. Instead, they aggregate into a biologically inactive state. Although this aggregation reaction has some practical advantages, in vitro renaturation of recombinant proteins, after solubilization of cellular aggregates, is still an empiric and random process. Thus, it is better to control cellular expression conditions to minimize this problem inside the cells. The most attractive approach is certainly the development of high throughput genetic screens to monitor efficient protein folding.  相似文献   

15.
Narayan M 《The FEBS journal》2012,279(13):2272-2282
The study of disulfide-bond-containing proteins has advanced our understanding of the mechanism(s) by which the majority of secretory and membrane-bound proteins acquire their biologically functional folded forms. This covalent linkage has been exploited by a number of research laboratories to harness or trap intermediates populating the folding trajectories of biopolymers. The resulting body of gathered in vitro data demonstrates that, in general, there is a common event underscoring the maturation of disulfide-bond-containing proteins. This commonality is the existence of competition between a physical, conformational folding reaction and a chemical, thiol-disulfide exchange reaction during fold acquisition. The competition, in turn, impacts the fate of the polypeptide in being secreted or retrotranslocated. The role of a host of subcellular factors, including protein disulfide isomerase, that influences this critical spatiotemporal juncture of the fold-maturation process is discussed. Finally, the impact of this competition on the onset of neurodegenerative disorders is elaborated upon.  相似文献   

16.
Recombinant production of HPV oncoprotein E6 is notoriously difficult. The unfused sequence is produced in inclusion bodies. By contrast, fusions of E6 to the C-terminus of carrier proteins such as maltose-binding protein or glutathione-S-transferase are produced soluble. However, it has not yet been possible to purify E6 protein from such fusion constructs. Here, we show that this was due to the biophysical heterogeneity of the fusion preparations. We find that soluble MBP-E6 preparations contain two subpopulations. A major fraction is aggregated and contains exclusively misfolded E6 moieties ('soluble inclusion bodies'). A minor fraction is monodisperse and contains the properly folded E6 moieties. Using monodispersity as a screening criterion, we optimized the expression conditions, the purification process and the sequence of E6, finally obtaining stable monodisperse MBP-E6 preparations. In contrast to aggregated MBP-E6, these preparations yielded fully soluble E6 after proteolytic removal of MBP. Once purified, these E6 proteins are stable, folded and biologically active. The first biophysical measurements on pure E6 were performed. This work shows that solubility is not a sufficient criterion to check that the passenger protein in a fusion construct is properly folded and active. By contrast, monodispersity appears as a better quality criterion. The monodispersity-based strategy presented here constitutes a general method to prepare fusion proteins with optimized folding and biological activity.  相似文献   

17.
Teschke CM 《Biochemistry》1999,38(10):2873-2881
Aggregation is a common side reaction in the folding of proteins which is likely due to inappropriate interactions of folding intermediates. In the in vivo folding of phage P22 coat protein, amino acid substitutions that cause a temperature-sensitive-folding (tsf) phenotype lead to the localization of the mutant coat proteins to inclusion bodies. Investigated here is the aggregation of wild-type (WT) coat protein and 3 tsf mutants of coat protein. The tsf coat proteins aggregated when refolded in vitro at high temperature. If the tsf coat proteins were refolded at 4 degrees C, they were able attain an assembly active state. WT coat protein, on the other hand, did not aggregate significantly even when folded at high temperature. The refolded tsf mutants exhibited altered secondary and tertiary structures and had an increased surface hydrophobicity, which may explain the increased propensity of their folding intermediates to aggregate.  相似文献   

18.
Napins belong to the family of 2S albumin seed storage proteins and are shown to possess antifungal activity. Napins, in general, consist of two subunits (derived from single precursor) linked by disulphide bridges. Usually, reducing environment of the E. coli cytosol is not conducive for proper folding of heterodimeric proteins containing disulphide bridges. Present investigation reports for the first time expression of napin-like protein of Momordica charantia (rMcnapin) in E. coli and its in vitro refolding to produce biologically active protein. Full-length cDNA encoding napin-like protein (2S albumin) was isolated from M. charantia seeds by immunoscreening a cDNA expression library. The cDNA consisted of an open reading frame encoding a protein of 140 amino acid residues. The 36 amino acids at the N-terminus represent the signal and propeptide. The region encoding small and large chains of the M. charantia napin is separated by a linker of 8 amino acid residues. The region encoding napin (along with the linker) was PCR amplified, cloned into pQE-30 expression vector and expressed in E. coli. rMcnapin expressed as inclusion bodies was solubilized and purified by Ni2+-NTA affinity chromatography. The denatured and reduced rMcnapin was refolded by rapid dilution in an alkaline buffer containing glycerol and redox couple (GSH and GSSG). Refolded His-rMcnapin displayed similar spectroscopic properties as that of mature napin-like protein of M. charantia with 48.7% alpha-helical content. In addition, it also exhibited antifungal activity against T. hamatum with IC50 of 3 microg/ml. Refolded His-rMcnapin exhibited approximately 90% antifungal activity when compared with that of mature napin-like protein of M. charantia. Thus, a heterologous expression system and in vitro refolding conditions to obtain biologically active napin-like protein of M. charantia were established.  相似文献   

19.
Protein folding and quality control in the endoplasmic reticulum   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. ER quality control guided by these chaperones is essential for life. Whereas correctly folded proteins are exported from the ER, misfolded proteins are retained and selectively degraded. At least two main chaperone classes, BiP and calnexin/calreticulin, are active in ER quality control. Folding factors usually are found in complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other.  相似文献   

20.
Optimizing protein folding to the native state in bacteria.   总被引:5,自引:0,他引:5  
A correctly folded protein is usually both active and soluble. This review focuses on novel ways to improve the folding of recombinant proteins during production in bacteria and includes a few tips for refolding proteins. Major results in correlating protein primary structure with proper folding and stability, and the production of viral antigens and antibodies in bacteria are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号