首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Despite increased neurogenic differentiation markers in the hippocampal CA1 in Alzheimer disease, neurons are not replaced in CA1 and the neocortex in the disease. beta-Amyloid (Abeta) might cause deterioration of the brain microenvironment supporting neurogenesis and the survival of immature neurons. To test this possibility, we examined whether Abeta alters the expression of cell fate determinants in cerebral cortical cultures and in an Alzheimer disease mouse model (PrP-APP(SW)). Up-regulation of Mash1 and down-regulation of Olig2 were found in cerebral cortical cultures treated with Abeta-(1-42). Mash1 was expressed in nestin-positive immature cells. The majority of Mash1-positive cells in untreated cortical culture co-expressed Olig2. Abeta increased the proportion of Olig2-negative/Mash1-positive cells. A decrease in Olig2+ cells was also observed in the cerebral cortex of adult PrP-APP(SW) mice. Cotransfection experiments with Mash1 cDNA and Olig2 siRNA revealed that overexpression of Mash1 in neurosphere cells retaining Olig2 expression enhanced neural differentiation but accelerated death of Olig2-depleted cells. Growth factor deprivation, which down-regulated Olig2, accelerated death of Mash1-overexpressing neurosphere cells. We conclude that cooperation between Mash1 and Olig2 is necessary for neural stem/progenitor cells to develop into fully mature neurons and that down-regulation of Olig2 by Abeta in Mash1-overexpressing cells switches the cell fate to death. Maintaining Olig2 expression in differentiating cells could have therapeutic potential.  相似文献   

4.
Lu QR  Sun T  Zhu Z  Ma N  Garcia M  Stiles CD  Rowitch DH 《Cell》2002,109(1):75-86
The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors. Targeted disruption of these two genes sheds light on the ontogeny of oligodendroglia and genetic requirements for their development from multipotent CNS progenitors. Olig2 is required for oligodendrocyte and motor neuron specification in the spinal cord. Olig1 has roles in development and maturation of oligodendrocytes, evident especially within the brain. Both Olig genes contribute to neural pattern formation. Neither Olig gene is required for astrocytes. These findings, together with fate mapping analysis of Olig-expressing cells, indicate that oligodendrocytes are derived from Olig-specified progenitors that give rise also to neurons.  相似文献   

5.
6.
NG2 (nerve/glial antigen2)-expressing cells represent the largest population of postnatal progenitors in the central nervous system and have been classified as oligodendroglial progenitor cells, but the fate and function of these cells remain incompletely characterized. Previous studies have focused on characterizing these progenitors in the postnatal and adult subventricular zone and on analyzing the cellular and physiological properties of these cells in white and gray matter regions in the forebrain. In the present study, we examine the types of neural progeny generated by NG2 progenitors in the cerebellum by employing genetic fate mapping techniques using inducible Cre–Lox systems in vivo with two different mouse lines, the Plp-Cre-ERT2/Rosa26-EYFP and Olig2-Cre-ERT2/Rosa26-EYFP double-transgenic mice. Our data indicate that Olig2/Plp-positive NG2 cells display multipotential properties, primarily give rise to oligodendroglia but, surprisingly, also generate Bergmann glia, which are specialized glial cells in the cerebellum. The NG2+ cells also give rise to astrocytes, but not neurons. In addition, we show that glutamate signaling is involved in distinct NG2+ cell-fate/differentiation pathways and plays a role in the normal development of Bergmann glia. We also show an increase of cerebellar oligodendroglial lineage cells in response to hypoxic–ischemic injury, but the ability of NG2+ cells to give rise to Bergmann glia and astrocytes remains unchanged. Overall, our study reveals a novel Bergmann glia fate of Olig2/Plp-positive NG2 progenitors, demonstrates the differentiation of these progenitors into various functional glial cell types, and provides significant insights into the fate and function of Olig2/Plp-positive progenitor cells in health and disease.  相似文献   

7.
8.
9.
BACKGROUND: Organizing signals such as Sonic hedgehog are thought to specify neuronal subtype identity by regulating the expression of homeodomain proteins in progenitors of the embryonic neural tube. One of these, Nkx2.2, is necessary and sufficient for the development of V3 interneurons. RESULTS: We report that Olig genes, encoding basic helix-loop-helix (bHLH) proteins, are expressed in a subset of Nkx2.2 progenitors before the establishment of interneurons and oligodendroglial precursors. Gain-of-function analysis in transgenic mouse embryos indicates that Olig genes specifically inhibit the establishment of Sim1-expressing V3 interneurons. Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors. Colocalization of Olig and Nkx2.2 proteins at the dorsal extent of the Nkx2.2 expression domain is consistent with regulatory interactions that define the potential of progenitor cells in the border region. CONCLUSIONS: Interactions between homeodomain and Olig bHLH proteins evidently regulate neural cell fate acquisition and diversification in the ventral neural tube. In particular, interactions between Olig and Nkx2.2 proteins inhibit V3 interneuron development and promote the formation of alternate cell types, including those expressing Sox10.  相似文献   

10.
11.
12.
The genetic program that underlies the generation of visceral motoneurons in the developing hindbrain remains poorly defined. We have examined the role of Nkx6 and Nkx2 class homeodomain proteins in this process, and provide evidence that these proteins mediate complementary roles in the specification of visceral motoneuron fate. The expression of Nkx2.2 in hindbrain progenitor cells is sufficient to mediate the activation of Phox2b, a homeodomain protein required for the generation of hindbrain visceral motoneurons. The redundant activities of Nkx6.1 and Nkx6.2, in turn, are dispensable for visceral motoneuron generation but are necessary to prevent these cells from adopting a parallel program of interneuron differentiation. The expression of Nkx6.1 and Nkx6.2 is further maintained in differentiating visceral motoneurons, and consistent with this the migration and axonal projection properties of visceral motoneurons are impaired in mice lacking Nkx6.1 and/or Nkx6.2 function. Our analysis provides insight also into the role of Nkx6 proteins in the generation of somatic motoneurons. Studies in the spinal cord have shown that Nkx6.1 and Nkx6.2 are required for the generation of somatic motoneurons, and that the loss of motoneurons at this level correlates with the extinguished expression of the motoneuron determinant Olig2. Unexpectedly, we find that the initial expression of Olig2 is left intact in the caudal hindbrain of Nkx6.1/Nkx6.2 compound mutants, and despite this, all somatic motoneurons are missing. These data argue against models in which Nkx6 proteins and Olig2 operate in a linear pathway, and instead indicate a parallel requirement for these proteins in the progression of somatic motoneuron differentiation. Thus, both visceral and somatic motoneuron differentiation appear to rely on the combined activity of cell intrinsic determinants, rather than on a single key determinant of neuronal cell fate.  相似文献   

13.
14.
15.
Basic helix-loop-helix factors in cortical development   总被引:38,自引:0,他引:38  
Ross SE  Greenberg ME  Stiles CD 《Neuron》2003,39(1):13-25
  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号