首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arylsulphatases in human brain: assay, some properties, and distribution   总被引:2,自引:0,他引:2  
Abstract— Arylsulphatases (aryl-sulphate sulphohydrolases; E.C. 3.1.6.1) in human brain were studied using a highly sensitive fluorometric technique based on the use of 4-methyl-umbelliferone sulphate (MUS) as substrate. In the dialysed homogenate of human brain at least two enzymes could be distinguished on the basis of pH optima and substrate concentration. One MUS-sulphatase, of the ‘insoluble’ type, exhibited a pH optimum of 6–9 and an apparent Km of 0.05 mM, whereas the second, belonging to the ‘soluble’ type, exhibited pH optimum of 6–0 and an apparent Km of 6.25 mM. Pronounced activities of the two arylsulphatases were observed in the 18,000 g sediment. About 25 per cent of the total tissue activity of the ‘soluble’-type MUS-sulphatase was found in the soluble subcellular fraction. However, this enzyme was completely solubilized by extraction of acetone-dried human brain with acetate buffer.  相似文献   

2.
Following the previous ultrastructural demonstration of the presence of arylsulphatase (Asase) activities in Kurloff cells (KC) and of their quasi-exclusive localization in the Kurloff body (KB), this work investigates their biochemical and zymographic properties after extraction from purified KC suspensions. Using the discriminative inhibitory conditions of both the Baum or LeeVaupel and Conzelmann methods, nitrocatechol sulphate hydrolyzing enzymes of the KC were assumed to belong to the B class of the type II Asase alone. After electrophoretic separation under non-denaturing conditions in a 4–23% polyacrylamide gel, they were characterized by 55 kDa and 62 kDa zymographic bands. After isoelectric focusing, ‘classical’ cationic isoforms (pI 8.5) and two anionic isoforms (pI 4.4 and 4.6) were observed on zymograms. As expected for class B Asase, the different zymographic forms of KC Asase were only recovered in the unadsorbed fraction after anion-exchange chromatography on DEAE-cellulose column equilibrated with high ionic strength buffer. Their Km (2.1 mM), their optimum pH (5.8) and their inhibitions by sulfite, phosphate, sulphate and ascorbic acid as well as their slight stimulation by AgNO3 were also characteristic of this class of Asase. Finally, chondroitin4-sulphate was shown to potentially be a physiological substrate for these lysosomal enzymes.  相似文献   

3.
Abstract— The presence of a nonspecific NADH-linked aldehyde reductase was demonstrated in various regions of bovine brain in vitro. With m-nitrobenzaldehyde as substrate, the rate of NADH oxidation was approximately 4 nmol.min-1.(mg of protein)-1 in the cerebellum, pons and medulla; but somewhat lower rates [2–3 nmol.min-1.(mg of protein)-l] were obtained in the other areas of the brain examined. The enzyme was localized primarily in the soluble, supernatant fraction of rat brain homogenates. The enzyme from the supernatant fluid fraction of bovine brain was purified approximately 350-fold by ammonium sulphate fractionation and chromatography on calcium phosphate-gel, DEAE-cellulose and Sephadex G200 columns. The partially purified enzyme catalysed the reduction of a number of aldehydes, including substituted benzaldehydes and aliphatic aldehydes of intermediate chain lengths. Short chain aliphatic aldehydes, such as acetaldehyde, were not reduced by the enzyme and butyraldehyde was a poor substrate. With m-nitrobenzaldehyde as substrate, NADH was oxidized at an approximately 10-fold faster rate than NADPH. The pH optimum for the enzyme was 6.75 for aldehyde reduction, whereas the rate of oxidation of m-nitrobenzylalcohol was optimal at pH 10.0 with NAD as the co-substrate. Km and K3 values ranged from 10 μM to 10 mM for various aldehydes and from 10 to 30 μM for the cofactors. Oxidation of NADH by the partially purified enzyme was not inhibited by 10m pyrazole or by 1 mM phenobarbital. However, the enzyme activity was inhibited by approximately 60 percent by 1 mM chlorpromazine or by 5 mM 1,10-orthophenanthroline. Our data demonstrate that the enzyme is not only separable from the NADPH-linked aldehyde reductase described previously by TABAKOFF and ERWIN, but also is quite different in substrate specificity and inhibitor sensitivity from the ‘classical’, pyrazole-sensitive, NAD- linked alcohol dehydrogenase (EC 1.1.1.1).  相似文献   

4.
Aerobic cultures of an actinomycete were found to produce penicillin V acylase (PVA) (PA, EC-3.5.1.11) extracellularly. The presence of L-2-3 diamino-propionic acid in cell wall and formation of sclerotia on culture media led to its identification as Chainia, a sclerotial Streptomyces. Partially purified acylase was adsorbed on kieselguhr and entrapped in polyacrylamide gel. The immobilized preparation proved effective with respect to retention of enzyme and enzyme activity even after 15 successful cycles. The pH optimum for crude enzyme was in the range of pH 7.5–8.0, and for the (NH4)2 SO4 fraction it was pH 8.5. The immobilized enzyme showed maximal activity at pH 9.5. The optimum temperature for acylase activity was at 55°C. The crude enzyme, ammonium sulfate fraction, and immobilized enzyme showed K m value for penicillin V of 6.13 mM, 14.3 mM, and 17.1 mM, respectively. Received: 11 December 1997 / Accepted: 9 April 1998  相似文献   

5.
Actinoplanes missouriensis produces an intracellular soluble glucose Isomerase. The soluble enzyme can be purified by a DEAE-cellulose beads columm with a onestep salt elution. The purified enyzme exhibited a molecular weight of approximately 80,000 daltons, being composed of two identical subunits of about 42,000 daltons each. The Km for glucose is 1.33M, the Km for frucotse is 1.67M. The enzyme has an optimal pH of 7.0. The presence of the cobalt ion is not required to produce optimal activity of the enzyme if the proper amount of magnesium is present.  相似文献   

6.
Abstract

The crude extracellular extract of Aspergillus niger (syn A. ficuum) NRRL 3135 contains glucoamylase (exo-1,4-α-D-glucanohydrolase, EC 3.2.1.2). The enzyme, a glycoprotein, was purified 7-fold by ion-exchange chromatography, chromatofocusing, and conconavalin A affinity chromatography. The molecular weight of the enzyme was estimated to be 90 kDa by SDS-PAGE and gel permeation chromatography. The pI of the enzyme was 3.4. The temperature optimum of the enzyme was 60°C and the pH optimum was 5.0. The Vmax values for soluble starch, maltose, maltotriose, maltotetraose, maltopentaose, and isomaltose were 55.2, 11.7, 32.3, 47.8, 59.2, 12.5 nKat glucose/sec, respectively and the Km values for the same substrates were 0.09%, 0.67 mM, 0.76 mM, 0.76 mM, 0.68 mM, and 122.01 mM, respectively.  相似文献   

7.
Based on polyacrylamide gel electrophoresis, density-gradient ultracentrifugation and thermal inactivation, there is only one major molecular species of each of the following larval enzymes (soluble in water or solubilized in Triton X-100): membrane-bound aminopeptidase (pH optimum 8.5; Km 0.21 mM L-leucine p-nitroanilide; Mr 322,000), amylase (pH optimum 6.5; Km 0.14% starch; Mr 66,000), lysozyme (pH optimum 3.5; Km 0.3 mg/ml; Mr 24,000); and membrane-bound trehalase (pH optimum 5.0; Km 1.09 mM trehalose; Mr 94,000). Except for lysozyme, the properties of adult digestive enzymes are different from those described for larval enzymes. Larval aminopeptidase and trehalase were purified by electrophoresis and larval lysozyme (contaminated with amylase) by density-gradient ultracentrifugation, and were used to raise antibodies in a rabbit. Antibodies raised against larval aminopeptidase, trehalase, and amylase did not recognize the imaginal enzymes, whereas those against larval lysozyme recognize imaginal lysozyme. The data suggest that the genes coding for digestive enzymes (except for lysozyme) are different in larvae and imagoes.  相似文献   

8.
Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P withK m of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, withK i values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed.  相似文献   

9.
An NADP-dependent 7β-hydroxysteroid dehydrogenase was purified 11.5-fold over the activity in crude cell extracts prepared from Peptostreptococcus productus strain b-52, by using Sephadex G-200 and DEAE-cellulose column chromatography. 7β-Dehydrogenation was the sole transformation of bile acids catalyzed by the partially purified enzyme. The enzyme preparation (spec. act. 2.781 IU per mg protein) had an optimum pH of 9.8. Lineweaver-Burk plots showed a Michaelis constant (Km) value of 0.05 mM for 3α,7β-dihydroxy-5β-cholanic acid whereas higher values were obtained with 3α,7β-dihydroxy-5β-cholanoyl glycine (0.20 mM), and 3α,7β-dihydroxy-5β-cholanoyl taurine (0.26 mM). NADP but not NAD could function as an electron acceptor, and has a Km value of 0.30 mM. A molecular weight of 64 000 was determined by SDS-polyacrylamide gel electrophoresis. The addition of 0.4 mM of either bile acid to the growth medium suppressed not only cell growth, but also the enzyme yield.  相似文献   

10.
Vance CP  Stade S 《Plant physiology》1984,75(1):261-264
A nonphotosynthetic phosphoenolpyruvate carboxylase (EC 4.1.1.31) was partially purified from the cytosol of root nodules of alfalfa. The enzyme was purified 86-fold by ammonium sulfate fractionation, DEAE-cellulose, hydroxylapatite chromatography, and reactive agarose with a final yield of 32%. The enzyme exhibited a pH optimum of 7.5 with apparent Km values for phosphoenolpyruvate and magnesium of 210 and 100 micromolar, respectively. Two isozymes were resolved by nondenaturing polyacrylamide disc gel electrophoresis. Subsequent electrophoresis of these isozymes in a second dimension by sodium dodecyl sulfate slab gel electrophoresis yielded identical protein patterns for the isozymes with one major protein band at molecular weight 97,000. Malate and AMP were slightly inhibitory (about 20%) to the partially purified enzyme. Phosphoenolpyruvate carboxylase comprised approximately 1 to 2% of the total soluble protein in actively N2-fixing alfalfa nodules.  相似文献   

11.
From cell cultures of Haplopappus gracilis, an enzyme, catalyzing the glucosylation of cyanidin at the 3 position using uridine diphosphate-D-glucose (UDPG) as glucosyl-donor, has been isolated and purified 50-fold. The enzyme was not specific for cyanidin alone, but also glucosylated other anthocyanidins and flavonols in position 3. However, apigenin, luteolin, naringenin and dihydroquercetin were not glucosylated. The reaction has an optimum pH of approximately 8, and the apparent K m values for UDPG and cyanidin were 0.5 and 0.33 mM respectively. The enzyme reaction is strongly inhibited by cyanidin (above 0.25 mM).  相似文献   

12.
The hydrogen-evolving reaction of the purified soluble NAD-linked hydrogenase of Alcaligenes eutrophus was used to determine kinetic parameters of the enzyme. The H2-evolving activity with methyl viologen as electron mediator was 20-fold as compared to that with NADH. In the assay with dithionite-reduced methyl viologen (K m 0.7 mM) the hydrogenase was most active at a redox potential of –560 mV and exhibited a pH optimum of 7.0. The K m for protons, the second substrate for H2 evolution, was 6.2 nM. With electrochemically reduced methyl viologen the pH optimum was shifted to pH 6.0. Double-reciprocal plots of reaction rates versus proton concentrations intercepted at the ordinate for different methyl viologen concentrations. At different pH values such an intercept was also observed with the dye as the varied substrate. The kinetic data are diagnostic for an ordered bisubstrate mechanism where both substrates are bound before the product H2 is released. Hydrogenase coupled to thylakoid membranes resulted in a constant H2 evolution rate over 6 h. The system appeared to be limited by the capacity of the thylakoid membranes.  相似文献   

13.
A protease was purified from fresh fruiting bodies of the edible mushroom Pleurotus citrinopileatus. The isolation procedure included ion exchange chromatography on DEAE-cellulose, CM-cellulose, and Q-Sepharose and fast protein liquid chromatography-gel filtration on Superdex 75. The protease was unadsorbed on DEAE-cellulose and Q-Sepharose, but adsorbed on CM-cellulose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protease demonstrated a single band with a molecular mass of 28 kDa. The protease showed an optimal pH at 10 and an optimal temperature at 50°C. The activity of the protease was not affected by EDTA, indicating that it is not a metalloprotease. The protease exhibited a higher activity in the presence of K+ and Li+, but its activity was potently inhibited by Al3+, Cu2+, and Hg2+ ions. It manifested a K m of 3.44 mg/ml and a V max of 0.139 mg ml−1 min−1. It was devoid of ribonuclease and antifungal activities.  相似文献   

14.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

15.
Hypoxanthine-guanine-phosphoribosyltransferase (HGPR Tase; ECC 2.4.2.8) has been purified from rat brain 650-fold to about 50 per cent purity by conventional methods. An isoenzyme pattern of at least three components is observed on DEAE-cellulose chromatography. On polyacrylamide disc electrophoresis only one sharp band of enzyme activity can be detected. The apparent Km-value determined for phosphoribosylpyrophosphate (PRPP) is about 0.2 mM. The product, GMP, and also GDP, GTP, UMP, CMP, AMP and ATP are competitive inhibitors with respect to PRPP. Inhibition by a number of other nucleotides has also been investigated. Studies on the development of enzyme activity in the brain of the young rat show that a rapid increase occurs during the first 15-20 days of life and reaches a plateau thereafter. The regional distribution of HGPRTase activity in adult rat brain is more homogenous than that reported for human brain. The enzyme is predominantly a constituent of the soluble supernatant fraction, but can also be found in carefully washed synaptosomes. An antiserum against rat brain HGPRTase obtained from rabbits inhibits this enzyme to about 30 per cent of control activity, but does not crossreact with HGPRTases from rabbit or human erythrocytes.  相似文献   

16.
(i) Three forms of cyclic AMP phosphodiesterases (3′,5′-cyclic AMP 5′-nucleotidohydrolase, EC 3.1.4.17), F1, F2-I and F2-II, were partially purified from the soluble fraction of rat pancreas in the presence of excess protease inhibitors by DEAE-cellulose column chromatography and gel filtration and were characterized. (ii) F2-II, which was purified 31-fold, exhibited a single peak of activity on both polyacrylamide-gel electrophoresis and isoelectric focusing. The enzyme had a molecular weight of about 70,000, an isoelectric point of 3.9, and an optimal pH around 8.5 and required Mg2+ or Mn2+ but not Ca2+ for activity. The Km values of this enzyme for cyclic AMP and cyclic GMP were 1 and 50 μm, respectively, while V values of this enzyme for cyclic AMP and cyclic GMP were 36.1 and 12.6 nmol min?1 (mg of protein)?1, respectively. Cyclic GMP competitively inhibited hydrolysis of cyclic AMP by this enzyme. Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone] also inhibited hydrolysis of cyclic AMP competitively, with a Ki value of 1 μm. (iii) Fraction F1, which was purified 10-fold, had a molecular weight of more than 500,000 and required Mg2+ for activity. Its Km values for cyclic AMP were 1 and 5 μm. Its Km value for cyclic GMP was 45 μm. Fraction F2-I, which was purified 26-fold, had a molecular weight of about 70,000. The ratio of the initial velocity of hydrolysis of cyclic GMP to that of cyclic AMP was 0.5 at a substrate concentration of 1 μm.  相似文献   

17.
Enzymes catalyzing the synthesis and subsequent transformation of α-acetolactate (AcL)—acetolactate synthase (AcLS) and acetolactate decarboxylase (AcLDC)—were isolated and partially purified from the cells of lactic acid bacteriaLactococcus lactis ssp.lactis biovar.diacetylactis, strain 4. The preparation of AcLS, purified 560-fold, had a specific activity of 358 300 U/mg protein (9% yield). The preparation of AcLDC., purified 4828-fold, had a specific activity of 140 U/mg protein (4.8% yield). The enzymes exhibited optimum activity at pH 6.5 and 6.0, respectively (medium, phosphate buffer). The values of apparentK m, determined for AcLS and AcLDC with pyruvate and AcL, respectively, were equal to 70 mM and 20 mM. AcLS appeared as an allosteric enzyme with low affinity for the substrate and a sigmoid dependence of the activity on the substrate concentration. In the case of AcLDC, this dependence was hyperbolic and the affinity of the enzyme for its substrate was high (K m = 20 mM). Leucine, valine, and isoleucine were shown to be activators of AcDLC.  相似文献   

18.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

19.
Three distinct forms of -glucosamine 6-P (Gm 6-P):N-acetyltransferases (EC 2.3.1.4) were partially purified from human placental homogenates by carboxy methyl-Sephadex chromatography. Purification of forms I and II were 13.5-fold, while that of form III was 114-fold. All three forms had a pH optimum value of 9.7 in glycine–NaOH buffer. Enzymes II and III had a Km value for Gm 6-P of 3.0 mM, which was less than half of that observed for form I (7.1 mM). The corresponding Km values for acetyl CoA were 0.157 (form I), 0.187 (form II) and 0.280 mM (form III), respectively. Activities of all three forms were inhibited at high concentrations of either substrate. These enzymes were inhibited from 82 to 92% by 2.5 mM p-chloromercuribenzoate. The inhibition was largely reversible by inclusion of 2.5 mM dithiothreitol in the incubation mixtures. There was no requirement for divalent cations, as demonstrated by lack of inhibition of enzyme activity by ethylene diamine tetraacetate. The results are discussed in terms of differences among the enzyme properties of human placental, rodent and porcine liver forms.  相似文献   

20.
Bacterial 2,3-butanediol dehydrogenases   总被引:3,自引:0,他引:3  
Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidized only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and reduction were pH 9 and pH 7, respectively. The optimum temperature was about 60°C. The molecular weight was 100000 to 107000. The K m-values were 3.3 mM for D(-)-butanediol, 6.25 mM for meso-butanediol, 0.53 mM for acetoin, 0.2 mM for NAD, 0.1 mM for NADH, 87 mM for diacetyl, 38 mM for 1,2-propanediol; 2,3-pentanedion was not a substrate for this enzyme. The L(+)-butanediol dehydrogenase from Serratia marcescens was purified 57-fold (specific activity 22.3). Besides NAD or NADH no cofactors were required. The optimum value for oxidation was about pH 9 and for reduction pH 4.5. The optimum temperature was 32–36°C. The molecular weight was 100000 to 107000. The K m-values were 5 mM for meso-butanediol, 10 mM for racemic butanediol, 6.45 for acetoin, 1 mM for NAD, 0.25 mM for NADH, 2.08 mM for diacetyl, 16.7 mM for 2,3-pentanedion and 11.8 mM for 1,2-propanediol.Abbreviations Bud 2,3-butanediol - DH dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号