首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

2.
The transposase of the bacterial insertion sequence IS1 is normally expressed by inefficient translational frameshifting between an upstream reading frame which itself specifies a transposition inhibitor, InsA, and a second consecutive reading frame located immediately downstream. A fused-frame mutant which carries an additional base pair inserted at the point of frameshifting was constructed. This mutant exhibits high transposition activity and should express the transposase, InsAB', constitutively without frameshifting. Unexpectedly, a second protein species was observed to be expressed from this mutant. We demonstrate here that this protein, InsA*, results from continued frameshifting on the modified frameshift motif. The protein retains the activities of the repressor InsA. Its elimination, by further modification of the frameshift motif, results in a further increase in various transposition activities of IS1. These results support the hypothesis that a single IS1-encoded protein, InsAB', is necessary for transposition.  相似文献   

3.
Evidence is presented that morpholino, 2'-O-methyl, phosphorothioate, and RNA antisense oligonucleotides can direct site-specific -1 translational frameshifting when annealed to mRNA downstream from sequences where the P- and A-site tRNAs are both capable of repairing with -1 frame codons. The efficiency of ribosomes shifting into the new frame can be as high as 40%, determined by the sequence of the frameshift site, as well as the location, sequence composition, and modification of the antisense oligonucleotide. These results demonstrate that a perfect duplex formed by complementary oligonucleotides is sufficient to induce high level -1 frameshifting. The implications for the mechanism of action of natural programmed translational frameshift stimulators are discussed.  相似文献   

4.
An autoregulatory translational shift to the +1 frame is required for the expression of ornithine decarboxylase antizyme from fungi to mammals. In most eukaryotes, including all vertebrates and a majority of the studied fungi/yeast, the site on antizyme mRNA where the shift occurs is UCC-UGA. The mechanism of the frameshift on this sequence likely involves nearly universal aspects of the eukaryotic translational machinery. Nevertheless, a mammalian antizyme frameshift cassette yields predominantly -2 frameshift in Saccharomyces cerevisiae, instead of the +1 in mammals. The recently identified endogenous S. cerevisiae antizyme mRNA has an atypical shift site: UGC-GCG-UGA. It is shown here that endogenous S. cerevisiae antizyme frameshifting is +1 rather than -2. We discuss how antizyme frameshifting in budding yeasts exploits peculiarities of their tRNA balance, and relate this to prior studies on Ty frameshifting.  相似文献   

5.
6.
The attB1 site in the Gateway (Invitrogen) bacterial expression vector pDEST17, necessary for in vitro site-specific recombination, contains the sequence AAA-AAA. The sequence A-AAA-AAG within the Escherichia coli dnaX gene is recognized as ‘slippery’ and promotes −1 translational frameshifting. We show here, by expressing in E. coli several plant cDNAs with and without single nucleotide deletions close to the translation initiation codons, that pDEST17 is intrinsically susceptible to −1 ribosomal frameshifting at the sequence C-AAA-AAA. The deletion mutants produce correct-sized, active enzymes with a good correlation between enzyme amount and activity. We demonstrate unambiguously the frameshift through a combination of Edman degradation, MALDI-ToF mass fingerprint analysis of tryptic peptides and MALDI-ToF reflectron in-source decay (rISD) sequencing. The degree of frameshifting depends on the nature of the sequence being expressed and ranged from 25 to 60%. These findings suggest that caution should be exercised when employing pDEST17 for high-level protein expression and that the attB1 site has some potential as a tool for studying −1 frameshifting.  相似文献   

7.
Nearly all members of a widespread family of bacterial transposable elements related to insertion sequence 3 (IS3), therefore called the IS3 family, very likely use programmed -1 ribosomal frameshifting to produce their transposase, a protein required for mobility. Comparative analysis of the potential frameshift signals in this family suggested that most of the insertion sequences from the IS51 group contain in their mRNA an elaborate pseudoknot that could act as a recoding stimulator. It results from a specific intramolecular interaction between an apical loop and an internal loop from two stem-loop structures. Directed mutagenesis, chemical probing, and gel mobility assays of the frameshift region of one element from the IS51 group, IS3411, provided clear evidences of the existence of the predicted structure. Modeling was used to generate a three-dimensional molecular representation of the apical loop-internal loop complex. We could demonstrate that mutations affecting the stability of the structure reduce both frameshifting and transposition, thus establishing the biological importance of this new type of RNA structure for the control of transposition level.  相似文献   

8.
Site-directed mutagenesis and nucleotide sequence analysis were used to study the roles of the global and local contexts in suppression of the lys2-90 frameshift (FS) mutation in Saccharomyces cerevisiae. Global context features established for the LYS2 mRNA region containing the extra T (lys2-90) were similar to those characteristic of regions involved in translational frameshifting. These were a potential ability of the region to form a pseudoknot and the presence of heptanucleotide CUU UGA C with the "hungry" UGA nonsense codon in the pseudoknot. Some local context features proved to be essential for the phenotypic expression of FS suppression as a result of translational frameshifting. Two amino acid substitutions determined by the nucleotide sequence between the extra U and the UGA nonsense codon lacked expression. A dependence was observed between the efficiency of FS suppression and the type of the nonsense codon located at a particular position downstream of the extra nucleotide (UGA > UAG > UAA). When translation termination was inactivated, nonsense suppression and FS suppression correlated with each other. These results suggest that translational frameshifting, which underlies suppression in the case of inactivation of translation termination, most likely takes place on the nonsense codon arising as a result of insertion of an extra nucleotide.  相似文献   

9.
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit.  相似文献   

10.
The IS911 bacterial transposable element has been analyzed for its mechanism of transposition and for the way it controls the expression of its genes by programmed -1 translational frameshifting. In the present study the prevalence of IS911 has been determined in the Enterobacteriaceae family and in other Gram-negative bacilli. Three variants, found in Escherichia coli clinical isolates and having mutations in the region implicated in frameshifting, were functionally characterized. All three were altered in their frameshifting and transposition abilities, suggesting that the frameshift region of IS911 may constitute a target for mutations reducing the transposition frequency of this mobile element in natural populations of E. coli.  相似文献   

11.
Like most retroviruses and retrotransposons, the retrotransposon Ty3 expresses its pol gene analog (POL3) as a translational fusion to the upstream gag analog (GAG3). The Gag3-Pol3 fusion occurs by frameshifting during translation of the mRNA that encodes the two separate but overlapping ORFs. We showed previously that the shift occurs by out-of-frame binding of a normal aminoacyl-tRNA in the ribosomal A site caused by an aberrant codonoanticodon interaction in the P site. This event is unlike all previously described programmed translational frameshifts because it does not require tRNA slippage between cognate or near-cognate codons in the mRNA. A sequence of 15 nt distal to the frameshift site stimulates frameshifting 7.5-fold. Here we show that the Ty3 stimulator acts as an unstructured region to stimulate frameshifting. Its function depends on strict spacing from the site of frameshifting. Finally, the stimulator increases frameshifting dependent on sense codon-induced pausing, but has no effect on frameshifting dependent on pauses induced by nonsense codons. Complementarity between the stimulator and a portion of the accuracy center of the ribosome, Helix 18, implies that the stimulator may directly disrupt error correction by the ribosome.  相似文献   

12.
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of + 1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the “out-of-frame pairing” model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA – possibly a result of their low growth rates and deep-water lifestyle – has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.  相似文献   

13.
14.
15.
IS629 is 1,310 bp in length with a pair of 25-bp imperfect inverted repeats at its termini. Two partially overlapping open reading frames, orfA and orfB, are present in IS629, and two putative translational frameshift signals, TTTTG (T4G) and AAAAT (A4T), are located near the 3'-end of orfA. With the lacZ gene as the reporter, both T4G and A4T motifs are determined to be a -1 frameshift signal. Two peptides representing the two transframe products designated OrfAB' and OrfAB, are identified by a liquid chromatography-tandem mass spectrometric approach. Results of transposition assays show that OrfAB' is the transposase and that OrfAB aids in the transposition of IS629. Pulse-chase experiments and Escherichia coli two-hybrid assays demonstrate that OrfAB binds to and stabilizes OrfAB', thus increasing the transposition activity of IS629. This is the first transposable element in the IS3 family shown to have two functional frameshifted products involved in transposition and to use a transframe product to regulate transposition.  相似文献   

16.
The antizyme protein, Oaz1, regulates synthesis of the polyamines putrescine, spermidine and spermine by controlling stability of the polyamine biosynthetic enzyme, ornithine decarboxylase. Antizyme mRNA translation depends upon a polyamine-stimulated +1 ribosomal frameshift, forming a complex negative feedback system in which the translational frameshifting event may be viewed in engineering terms as a feedback controller for intracellular polyamine concentrations. In this article, we present the first systems level study of the characteristics of this feedback controller, using an integrated experimental and modeling approach. Quantitative analysis of mutant yeast strains in which polyamine synthesis and interconversion were blocked revealed marked variations in frameshift responses to the different polyamines. Putrescine and spermine, but not spermidine, showed evidence of co-operative stimulation of frameshifting and the existence of multiple ribosome binding sites. Combinatorial polyamine treatments showed polyamines compete for binding to common ribosome sites. Using concepts from enzyme kinetics and control engineering, a mathematical model of the translational controller was developed to describe these complex ribosomal responses to combinatorial polyamine effects. Each one of a range of model predictions was successfully validated against experimental frameshift frequencies measured in S-adenosylmethionine-decarboxylase and antizyme mutants, as well as in the wild-type genetic background.  相似文献   

17.
Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region   总被引:110,自引:0,他引:110  
T Jacks  H D Madhani  F R Masiarz  H E Varmus 《Cell》1988,55(3):447-458
  相似文献   

18.
Programmed translational frameshift sites are sequences in mRNAs that promote frequent stochastic changes in translational reading frame allowing expression of alternative forms of protein products. The EST3 gene of Saccharomyces cerevisiae, encoding a subunit of telomerase, uses a programmed +1 frameshift site in its expression. We show that the site is complex, consisting of a heptameric sequence at which the frameshift occurs and a downstream 27-nucleotide stimulator sequence that increases frameshifting eightfold. The stimulator appears to be modular, composed of at least three separable domains. It increases frameshifting only when ribosomes pause at the frameshift site because of a limiting supply of a cognate aminoacyl-tRNA and not when pausing occurs at a nonsense codon. These data suggest that the EST3 stimulator may modulate access by aminoacyl-tRNAs to the ribosomal A site by interacting with several targets in a ribosome paused during elongation.  相似文献   

19.
Ribosomal frameshifting is used by various organisms to maximize protein coding potential of genomic sequences. It is commonly exploited by RNA viruses to overcome the constraint of their limited genome size. Frameshifting requires specific RNA structural features, such as a suitable heptanucleotide “slippery” sequence and an RNA pseudoknot. Previous genomic analysis of HIV-1 indicated the potential for several hidden genes encoded through frameshifting; one of these, overlapping the envelope gene, has an RNA pseudoknot just downstream from a slippery sequence, AAAAAGA that features an adenine quadruplet prior to a potential hungry arginine codon (AGA). This env-frameshift (env-fs) gene has been shown to encode a truncated glutathione peroxidase homologue, with both antioxidant and anti-apoptotic activities in transfected cells. Using a dual reporter cell-based frameshift assay, we demonstrate that the env-fs frameshift sequence is active in vitro. Furthermore, in arginine deficient media, env-fs frameshifting increased over 100% (p < 0.005), consistent with the hypothesized hungry codon mechanism. As a response to arginine deficiency, increased expression of the antioxidant viral GPx gene (env-fs) by upregulation of frameshifting could be protective to HIV-infected cells, as a countermeasure to the increased oxidative stress induced by arginine deficiency (because NO is a known scavenger of hydroxyl radical).  相似文献   

20.
Here we investigated ribosomal pausing at sites of programmed -1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号