首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ureibacillus thermosphaericus strain Thermo-BF is an aerobic, thermophilic bacillus which has been characterized to biosynthesize gold nanoparticles. Here we present the draft genome sequence of Ureibacillus thermosphaericus strain Thermo-BF which consists of a 2,864,162-bp chromosome. This is the first report of a shotgun sequenced draft genome of a species in the Ureibacillus genus.  相似文献   

2.
Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples from five conventional and five organic dairy farms, sampled in late summer/autumn and in winter, were plated on a standard medium and two differential media, one screening for phospholipolytic and the other for proteolytic activity of bacteria. Almost 930 isolates were obtained of which 898 could be screened via fatty acid methyl ester analysis. Representative isolates were further analysed using 16S rRNA gene sequencing and (GTG)(5)-PCR. The majority of aerobic spore-formers in milk belonged to the genus Bacillus and showed at least 97% 16S rRNA gene sequence similarity with type strains of Bacillus licheniformis, Bacillus pumilus, Bacillus circulans, Bacillus subtilis and with type strains of species belonging to the Bacillus cereus group. About 7% of all isolates may belong to possibly new spore-forming taxa. Although the overall diversity of aerobic spore-forming bacteria in milk from organic vs. conventional dairy farms was highly similar, some differences between both were observed: (i) a relatively higher number of thermotolerant organisms in milk from conventional dairy farms compared to organic farms (41.2% vs. 25.9%), and (ii) a relatively higher number of B. cereus group organisms in milk from organic (81.3%) and Ureibacillus thermosphaericus in milk from conventional (85.7%) dairy farms. One of these differences, the higher occurrence of B. cereus group organisms in milk from organic dairy farms, may be linked to differences in housing strategy between the two types of dairy farming. However, no plausible clarification was found for the relatively higher number of thermotolerant organisms and the higher occurrence of U. thermosphaericus in milk from conventional dairy farms. Possibly this is due to differences in feeding strategy but no decisive indications were found to support this assumption.  相似文献   

3.
This study investigated the species diversity and substrate utilization patterns of culturable thermophilic bacterial communities in hot aerobic poultry and cattle manure composts by coupling 16S rDNA analysis with Biolog data. Based on the phylogenetic relationships of 16S rDNA sequences, 34 thermophilic (grown at 60 degrees C) bacteria isolated during aerobic composting of poultry manure and cattle manure were classified as Bacillus licheniformis, B. atrophaeus, Geobacillus stearothermophilus, G. thermodenitrificans, Brevibacillus thermoruber, Ureibacillus terrenus, U. thermosphaericus, and Paenibacillus cookii. In this study, B. atrophaeus, Br. thermoruber, and P. cookii were recorded for the first time in hot compost. Physiological profiles of these bacteria, obtained from the Biolog Gram-positive (GP) microplate system, were subjected to principal component analysis (PCA). All isolates were categorized into eight different PCA groups based on their substrate utilization patterns. The bacterial community from poultry manure compost comprised more divergent species (21 isolates, seven species) and utilized more diverse substrates (eight PCA groups) than that from cattle manure compost (13 isolates, five species, and four PCA groups). Many thermophilic bacteria isolated in this study could use a variety of carboxylic acids. Isolate B110 (from poultry manure compost), which is 97.6% similar to U. terrenus in its 16S rDNA sequence, possesses particularly high activity in utilizing a broad spectrum of substrates. This isolate may have potential applications in industry.  相似文献   

4.
Wang W  Yan L  Cui Z  Gao Y  Wang Y  Jing R 《Bioresource technology》2011,102(19):9321-9324
A microbial consortium, designated WCS-6, was established by successive subcultivation in the presence of rice straw under static conditions. The degradation efficiencies of WSC-6 for 0.5 g filter paper, cotton and rice straw after 3 days of cultivation were 99.0±0.7%, 76.9±1.5% and 81.3±0.8%, respectively as determined by gravimetrical methods. Nine bacterial isolates were obtained from WCS-6 plated under aerobic conditions, and sequencing of their 16S rDNA indicated that these bacteria were related to Bacillus thermoamylovorans BTa, Paenibacillus barengoltzii SAFN-016, Proteobacterium S072, Pseudoxanthomonas taiwanensis CB-226, Rhizobiaceae str. M100, Bacillus sp. E53-10, Beta proteobacterium HMD444, Petrobacter succinimandens 4BON, and Tepidiphilus margaritifer N2-214. DGGE (denaturing gradient gel electrophoresis) and sequencing of 16S rDNA sequences amplified from total consortium DNA revealed the presence of sequences related to those of Ureibacillus thermosphaericus, uncultured bacterium clone GC3, uncultured Clostridium sp. clone A1-3, Clostridium thermobutyricum, and Clostridium thermosuccinogenes in addition to the sequences identified from the cultured bacteria. The microbial community identified herein is a potential candidate consortium for the degradation of waste lignocellulosic biomass.  相似文献   

5.
Abstract Comparative sequence analysis of the 16S rDNA of 14 alkaliphilic or alkalitolerant, Gram-positive, aerobic, endo-spore forming bacterial strains was performed. Bacillus alcalophilus DSM 485T and Bacillus cohnii DSM 6307T were included to represent the two validly described alkaliphiles assigned to the genus Bacillus . The majority of isolates (8 strains) clustered with B. alcalophilus DSM 485T forming a distinct phylogenetic group (rRNA group 6) within the radiation of the genus Bacillus and related taxa. Bacillus cohnii DSM 6307T and two of the isolates, DSM 8719 and DSM 8723, grouped with B. fastidiosus and B. megaterium and are allocated to rRNA group 1. The remaining two strains DSM 8720 and DSM 8721 show an equidistant relationship to both groups.  相似文献   

6.
A novel thermophilic, aerobic, endospore-forming bacterium, designated strain PizzoT, was isolated from geothermal volcanic environment. Samples were collected from the Pizzo sopra la Fossa site at Stromboli Island (Eolian Islands, south of Italy) at the high altitude of 918 m. Cells of strain PizzoT were rod-shaped and stained Gram-positive. Growth was observed between 50 and 75 degrees C (optimum 70 degrees C) and at pH 5.0-8.0 (optimum pH 7.0). NaCl (0.4%, w/v) supported growth and among the hydrocarbons tested none induced growth. The G+C content of the DNA was 54.1 mol% and the sequence analysis of the 16S rRNA gene showed that the new isolate was phylogenetically closely related to the members of the Bacillus rRNA Group 5. DNA-DNA hybridization studies revealed a borderline similarity between the new isolate and Geobacillus thermoleovorans DSM 5366T (69.8%) and Geobacillus kaustophilus DSM 7263T (63.4%). On the basis of phylogenetic analysis and physiological traits of the isolate, it should be described as a new member of the Geobacillus thermoleovorans species and it is proposed that strain PizzoT can be classified as Geobacillus thermoleovorans subsp. stromboliensis, subsp. nov. (ATCC BAA-979T; DSM 15393T).  相似文献   

7.
Fourteen obligate alkaliphilic and halotolerant bacterial isolates, exhibiting extracellular amylase activity at 55 degrees C and pH 10, were isolated from hot springs around Lake Bogoria, Kenya. From 16S rDNA sequence analysis, nine isolates shared 100% identity with Bacillus halodurans strain DSM 497T, while the rest shared 99% identity with alkaliphilic Bacillus species A-59. PCR of the intergenic spacer region between 16S and 23S rRNA genes (ISR-PCR) divided the isolates into two groups, while tDNA-PCR divided them into three groups. Bacillus halodurans DSM 497T had a different ISR pattern from the isolates, while it had a tDNA-PCR profile similar to the group that shared 99% identity with alkaliphilic Bacillus species A-59. All isolates hydrolysed soluble starch as well as amylose, amylopectin and pullulan. The amylase activity (1.2-1.8 U ml(-1)) in the culture broths had an optimum temperature of 55-65 degrees C, was stimulated by 1 mm Ca2+, and was either partially (16-30%) or completely inhibited by 1 mM EDTA. Activity staining of the cell-free culture supernatant from the isolates revealed five alkaline active amylase bands.  相似文献   

8.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

9.
Phylogenetic relationships of a thermophilic, halophilic, aerobic spore-forming strain 4-1(T), isolated from the water of a shallow sea hot spring at Vulcano Island (Italy), revealed its relatedness to members of the genus Bacillus. Chemotaxonomic and phenotypic properties of strain 4-1(T) are sufficiently different from related moderately thermophilic species, e.g., B. smithii, B. fumarioli, B. oleronius, B. sporothermodurans and B. infernus to describe strain 4-1(T) as a new Bacillus species, for which the name Bacillus aeolius sp. nov. is proposed. Strain 4-1(T) is characterised by the potential biotechnological important properties such as exopolysaccharide production, surfactant activity, and utilisation of hydrocarbons.  相似文献   

10.
The presence of highly heat-resistant spores of Bacillus sporothermodurans in ultrahigh-temperature or sterilized consumer milk has emerged as an important item in the dairy industry. Their presence is considered undesirable since they hamper the achievement of commercial sterility requirements. By using a selective 30-min heat treatment at 100 degrees C, 17 Belgian dairy farms were screened to evaluate the presence, sources, and nature of potentially highly heat-resistant spores in raw milk. High numbers of these spores were detected in the filter cloth of the milking equipment and in green crop and fodder samples. About 700 strains were isolated after the selective heating, of which 635 could be screened by fatty acid methyl ester analysis. Representative strains were subjected to amplified ribosomal DNA restriction analysis, 16S rRNA gene sequencing, percent G+C content, and DNA-DNA reassociations for further identification. The strain collection showed a remarkable diversity, with representatives of seven aerobic spore-forming genera. Bacillus licheniformis and Bacillus pallidus were the most predominant species overall. Twenty-three percent of the 603 spore-forming isolates proved to belong to 18 separate novel species. These findings suggest that the selective heating revealed a pool of unknown organisms with a higher heat-resistant character. This study showed that high spore counts can occur at the dairy farm and that feed and milking equipment can act as reservoirs or entry points for potentially highly heat-resistant spores into raw milk. Lowering this spore load by good hygienic measures could probably further reduce the contamination level of raw milk, in this way minimizing the aerobic spore-forming bacteria that could lead to spoilage of milk and dairy products. Assessment and characterization of this particular flora are of great importance to allow the dairy or food industry to adequately deal with newly arising microbiological problems.  相似文献   

11.
Thermophilic strains of Geobacillus, Anoxybacillus and Bacillus that are able to grow at 55 degrees C and above are recognized as commonly occurring contaminants during the production of milk powders. In particular, Anoxybacillus flavithermus strain C and Bacillus licheniformis strain F are often the most prevalent. We describe here the development of a TaqMan-based real-time-PCR assay using a small amplicon of the ribosomal 16S rRNA gene for the selective and quantitative detection of thermophilic bacilli in milk powders. We further present an effective, rapid and inexpensive method for the isolation of total bacterial DNA from milk powder for quantitative PCR analysis within 20 min. With this method, the detection of thermophilic bacilli in milk powder can be accomplished within 1 h. The detection limit for reconstituted and inoculated milk was 8 vegetative cfu ml(-1) and 64 spores ml(-1), respectively.  相似文献   

12.
Three strictly anaerobic, thermophilic methanogens (ZC-2T, ZC-3 and ZC-6) were isolated from Shengli oil field, China. The 16S rRNA gene sequences of the three strains were nearly identical, possessing > 99.8% sequence similarity. They also possessed high sequence similarity, 97.4%, to Methanoculleus palmolei strain INSLUZ(T) (97.4% and 97.5%, respectively), indicating that they represented a novel species within the genus Methanoculleus. Cells of strain ZC-2T were nonmotile cocci, 0.8-1.7 microm in diameter, and always occurred singly or in pairs. The three strains used H2/CO2 or sodium formate as substrates for methanogenesis but not sodium acetate, trimethylamine, monomethylamine, ethanol, dimethyl sulfide, isopropanol, isobutanol, butan-2-ol or H2/CO. Optimum growth of strain ZC-2T occurred in the presence of 0.2 M NaCl, pH 7.5-7.8 and temperature 50-55 degrees C with a specific growth rate of 0.084 h(-1). The mol% G+C content of the genomic DNA was 55.2 mol%. Based on these phenotypic and phylogenetic characteristics, strains ZC-2T, ZC-3 and ZC-6 are proposed to represent a novel species in the genus Methanoculleus and named Methanoculleus receptaculi sp. nov. The type strain is ZC-2T (CGMCC 1.5087T=DSM 18860T).  相似文献   

13.
Thermophilic aerobic composting is a widely practiced method for the disposal of exhaust materials. We isolated a thermophilic bacteria strain from a compost sample under aerobic conditions at 60 degrees C. On the basis of its 16S rRNA sequence and physiological characteristics, this strain was identified as Bacillus thermodenitrificans OHT-1. An 18-subunit oligonucleotide probe for 16S rRNA, labeled with fluorescein isothiocyanate, was developed for the detection of B. thermodenitrificans. Spores and vegetative cells of B. thermodenitrificans OHT-1 were detected in liquid culture and laboratory compost by whole cell hybridization using this oligonucleotide probe. The results obtained by whole cell hybridization were evaluated in growth experiments of B. thermodenitrificans OHT-1 in laboratory compost and were used to enumerate spores and vegetative cells.  相似文献   

14.
Taxonomy of alkaliphilic Bacillus strains   总被引:3,自引:0,他引:3  
The DNA base compositions of 78 alkaliphilic Bacillus strains were determined. These strains were grouped as follows: DNA group A, guanine-plus-cytosine (G+C) content of 34.0 to 37.5 mol% (17 strains); DNA group B, G+C content of 38.2 to 40.8 mol% (33 strains); and DNA group C, G+C content of 42.1 to 43.9 mol% (28 strains). DNA group A includes the type strain of Bacillus alcalophilus Vedder 1934. DNA-DNA hybridization studies with DNA group A strains revealed that only one strain, strain DSM 2526, exhibited a high level of DNA homology with B. alcalophilus DSM 485T (T = type strain). Neither strain DSM 485T nor any other DNA group A strain is homologous to any of the Bacillus type strains with comparable base compositions. Six strains formed a distinct group containing three highly homologous strains and three strains exhibiting greater than 50% DNA homology.  相似文献   

15.
A thermophilic, spore-forming bacterial strain L1(T) was isolated from hot compost "Pomigliano Environment" s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1(T) resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68 degrees C chemorganotrophic bacterium which grew on hydrocarbons as unique carbon and energy sources and was resistant to heavy metals. The G+C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Amplified Polymorphic DNA-PCR (RAPD-PCR) analysis of L1(T) and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellular fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predominant. Isolates grew on a rich complex medium at temperatures between 55-75 degrees C and presented a doubling time (t(d)) of 2 h and 6 h using complex media and hydrocarbon media, respectively. Among hydrocarbons tested, n-decane (2%) was the more effective to support the growth (1 g/L of wet cells). The microorganism showed resistance to heavy metal tested during the growth. Furthermore, intracellular alpha-galactosidase and alpha-glucosidase enzymatic activities were detectable in the L1(T) strain. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA-DNA hybridization, we propose assigning a novel subspecies of Geobacillus toebii, to be named Geobacillus toebii subsp. decanicus subsp. nov., with the type strain L1(T) (=DSM 17041=ATCC BAA 1004).  相似文献   

16.
Inulinase and Invertase Activities, Thermophilic Bacilli, Enzyme Thermostability Enzyme production of newly isolated thermophilic inulin-degrading Bacillus sp. 11 strain was studied by batch cultivation in a fermentor. The achieved inulinase and invertase activities after a short growth time (4.25 h) were similar or higher compared to those reported for other mesophilic aerobic or anaerobic thermophilic bacterial producers and yeasts. The investigated enzyme belonged to the exo-type inulinases and splitted-off inulin, sucrose and raffinose. It could be used at temperatures above 65 degrees C and pH range 5.5-7.5. The obtained crude enzyme preparation possessed high thermostability. The residual inulinase and invertase activities were 92-98% after pretreatment at 65 degrees C for 60 min in the presence of substrate inulin.  相似文献   

17.
In the search for novel Xenorhabdus strains in a recently described nematode species, Steinernema thermophilum, three strains (strain 28(T) = DSM 17382(T), strain 42 = DSM 17383 and strain 43 = DSM 17384) were isolated from three independent isolation approaches from crushed mixture of infective juveniles. 16S rRNA gene sequence comparison of strains 28(T) and DSM 17383 indicated identity and the phylogenetic position pointed towards an individual taxon within the phylogenetic dendrogram of Xenorhabdus type strains. The nearest phylogenetic relatives of strain 28(T) were Xenorhabdus poinarii and Xenorhabdus szentirmaii (97.7% each). The three isolates were almost identical in reaction towards the API and BIOLOG substrate panels but differed in their reactions from those of the established type strains of the genus Xenorhabdus. These clear genomic and metabolic differences let us propose a new species, Xenorhabdus indica sp. nov. for the three clones. The type strain is strain 28(T), DSM 17382(T), CIP 108830(T).  相似文献   

18.
Three cryptoendolithic, aerobic actinomycetes (AA-459T, AA-319 and AA-321) from antarctic sandstone were characterised phenotypically and by molecular taxonomic methods. The isolates had single spores on substrate mycelium, meso-diaminopimelic acid (m-DAP) and glycine (cell wall type II), a whole cell sugar pattern D (galactose, xylose, arabinose, glucose or rhamnose) and phospholipids of type PII (diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol). Their predominant fatty acids were iso-16:0 and iso-15:0 or 17:1omega8c, the menaquinone profile was complex with mainly MK10 (H4) and MK10 (H6). A wide variety of sugars and several acids were utilised for growth. The isolates were sensitive to a few antibiotics, but formation and excretion of antibiotics was not observed. Phenotypically, isolates AA-319 and AA-321 were similar. Phylogenetic analysis of 16S rRNA gene sequences revealed close relationship of strains AA-319 and AA-321 with each other (99.5%) and clustering (98.5%) with Micromonospora coerulea DSM 43143T. DNA-DNA hybridisation showed both strains to be genomically highly similar to strain DSM 43143T. Phenotypically they could be viewed as separate taxa, but presently they will be considered as strains of Micromonospora coerulea. Strain AA-459T was phylogenetically close to Micromonospora chersina DSM 44151T (99.1%) and to Micromonospora rosaria DSM 803T, but DNA-DNA similarity with M. chersina DSM 44151T was low with 28.9/33.5 %, indicating the presence of a different and new species. Consequently, isolate AA-459T (DSM 44398T NRRL B-24248T) is described as the type strain of Micromonospora endolithica sp. nov.  相似文献   

19.
Bacillus endospores show different kinds of pigmentation. Red-pigmented spores of Bacillus atrophaeus DSM 675, dark-gray spores of B. atrophaeus(T) DSM 7264 and light-gray spores of B. subtilis DSM 5611 were used to study the protective role of the pigments in their resistance to defined ranges of environmental UV radiation. Spores of B. atrophaeus DSM 675 possessing a dark-red pigment were 10 times more resistant to UV-A radiation than those of the other two investigated strains, whereas the responses to the more energetic UV-B and UV-C radiation were identical in all three strains. The methanol fraction of the extracted pigment from the spores absorbs in the associated wavelength area. These results indicate that the carotene-like pigment of spores of B. atrophaeus DSM 675 affects the resistance of spores to environmental UV-A radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号