首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study, we present the results of a dendroclimatological investigation of three coniferous tree species, Larix principis-rupprechtii, Picea meyeri and Pinus tabulaeformis, growing along an altitudinal gradient at the Lüliang Mountains in Northern China. Totally five tree-ring width chronologies were developed to explore the climate-growth responses of these tree species. No obviously regular trend associated with the increase of elevation was found by comparing the statistical characteristics of the chronologies. Correlation analysis indicated that the chronologies from lowerest to middle-high sites (SZ, BWD, BDGL and BDGP, respectively) were highly correlated, and different species from the same site showed the highest correlation. Growth–climate analysis indicated that the chronology of Larix principis-rupprechti at the uppermost site near the tree line (XWS) did not exhibit a significant response to the seasonal climatic factors, whereas the other four lower chronologies were consistently and significantly influenced by both the mean temperature from May to July and the total precipitation from March to June, regardless of tree species and elevation. The similarity of the tree growth–climate relationships of different species growing at different elevations (except that from the tree line) suggests that the trees in this region can provide common regional climate information, and combinations of multiple species (RC) are more successful in reconstructing the climate data than single species. The results of this research are very crucial for the future forest management and dendroclimatological sampling strategy in the arid to semi-arid area of northern China.  相似文献   

2.
The vegetation classification in China was updated by referring to recent advances for vegetation classification worldwide and on the basis of our former paper Recognition and Proposal on the Vegetation Classification System of China (hereafter, "Recognition and Proposal"). In this revision, the criteria for vegetation classification were discussed and unified, and a quantified standard for high, medium, and low level units in a new hierarchical classification scheme was supplemented. Compared with the old classification scheme in "Recognition and Proposal", the units at the level of vegetation type were substantially changed. Finally, in order to improve mutual communication among international peers, a comparison was carried out between the new revised scheme and each of International Classification and Mapping of Vegetation of UNESCO, The National Vegetation Classification Standard of United States, and The Braun-Blanquet Classification Scheme.  相似文献   

3.
Aims Forests represent the most important component of the terrestrial biological carbon pool and play an important role in the global carbon cycle. The regional scale estimation of carbon budgets of forest ecosystems, however, have high uncertainties because of the different data sources, estimation methods and so on. Our objective was to accurately estimate the carbon storage, density and sequestration rate in forest vegetation in Jilin Province of China, in order to understand the role of the carbon sink and to better manage forest ecosystems. Methods Vegetation survey data were used to determine forest distribution, size of area and vegetation types regionally. In our study, 561 plots were investigated to build volume-biomass models; 288 plots of shrubs and herbs were harvested to calculate the biomass of understory vegetation, and samples of trees, shrubs and herbs were collected to analyze carbon content. Carbon storage, density and sequestration rate were estimated by two forest inventory data (2009 and 2014), combined with volume-biomass models, the average biomass of understory vegetation and carbon content of vegetation. Finally, the distribution patterns of carbon pools were presented using ArcGIS soft ware. Important findings Understory vegetation biomass overall was less than 3% of the tree layer biomass, varying greatly among different forest types and even among the similar types. The carbon content of trees was between 45.80% 52.97%, and that of the coniferous forests was higher than that of the broadleaf forests. The carbon content of shrub and herb layers was about 39.79% 47.25% and 40%, respectively. Therefore, the vegetation carbon conversion coefficient was 0.47 or 0.48 in Jilin Province, and the conventional use of 0.50 or 0.45 would cause deviation of ±5.26%. The vegetation carbon pool of Jilin Province was at the upper range of regional carbon pool and had higher capacity of carbon sequestration. The value in 2009 and 2014 was 471.29 Tg C and 505.76 Tg C, respectively, and the total increase was 34.47 Tg C with average annual growth of 6.89 Tg C•a1. The corresponding carbon sequestration rate was 0.92 t•hm 2•a1. The carbon density rose from 64.58 t•hm 2 in 2009 to 66.68 t•hm2 in 2014, with an average increase of 2.10 t•hm2. In addition, the carbon storage of the Quercus mongolica forests and broadleaved mixed forests, accounted for 90.34% of that of all forests. The carbon increment followed the order of young > over-mature > near mature > middle-aged > mature forests. The carbon sequestration rate of followed the order of over-mature > young > near mature > middle-aged > mature forests. Both the carbon increment and the carbon sequestration rate of mature forests were negative. Furthermore, spatially the carbon storage and density were higher in the east than in the west of Jilin province, while the carbon increment was higher in northeast and middle east than in the west. The carbon sequestration rate was higher in Tonghua and Baishan in the south, followed by Jinlin in the middle and Yanbian in the east, while Baicheng and Songyuan, etc. in west showed negative values.  相似文献   

4.
Water retention characteristics, rainfall, throughfall and soil water content dynamics were investigated in a low mountain area to compare a forest and a grassland. The soil water retention curve of the topsoil has similar shape in both studied areas, however that of the deeper soil layer shows more difference. We determined the precipitation depth, duration and intensity values of rainfall events. The relationship between rainfall and throughfall depth was described in linear regressions. Interception was calculated as the difference between rainfall and throughfall plus stemflow, assuming stemflow to be 3% of rainfall. Soil water content dynamics show a similar trend in the two vegetation types but the drying is more intensive in the forest in the soil layers deeper than 20 cm during the growing-season.  相似文献   

5.
Fire in the Great Hing′an Mountains in 1987 affected an area of more than 1.33×106 hm2, creating a mosaic of burn severities across the landscape, which strongly affected the postfire vegetation succession. In addition, undulate landform and anthropogenic disturbance inevitably influenced the postfire vegetation succession. In this paper, a typical area was selected for a case study, including two forest farms, covering more than 1.2×105 hm2. In order to reveal how the forest changed in 2000 (13 years after the fire) by comparing with 1987 (prefire) and to find out the relationship between the forest succession and the affecting factors, forest crown density was selected as the criterion, and forest type, fire severity, silviculture practice, elevation and topography gradients were designed as the affecting variables. With the support of GIS software, each variable was classified and entered into the multivariate regression model. The result showed that the forest crown density changed notably in 2000 compared with that of the prefire, and all the variables significantly affected the forest crown density. The most important affecting variable was elevation, which was positively correlated with the forest crown density. The next was fire severity, which was negatively related with the forest succession. The effects of topographic factors and silviculture practices on forest crown density were relatively small.  相似文献   

6.
Xie F J  Xiao D N  Li X Z 《农业工程》2007,27(3):879-886
Fire in the Great Hing′an Mountains in 1987 affected an area of more than 1.33×106 hm2, creating a mosaic of burn severities across the landscape, which strongly affected the postfire vegetation succession. In addition, undulate landform and anthropogenic disturbance inevitably influenced the postfire vegetation succession. In this paper, a typical area was selected for a case study, including two forest farms, covering more than 1.2×105 hm2. In order to reveal how the forest changed in 2000 (13 years after the fire) by comparing with 1987 (prefire) and to find out the relationship between the forest succession and the affecting factors, forest crown density was selected as the criterion, and forest type, fire severity, silviculture practice, elevation and topography gradients were designed as the affecting variables. With the support of GIS software, each variable was classified and entered into the multivariate regression model. The result showed that the forest crown density changed notably in 2000 compared with that of the prefire, and all the variables significantly affected the forest crown density. The most important affecting variable was elevation, which was positively correlated with the forest crown density. The next was fire severity, which was negatively related with the forest succession. The effects of topographic factors and silviculture practices on forest crown density were relatively small.  相似文献   

7.
Deviations between observed and simulated discharge in the basins along the borders of the Czech Republic with Austria and Germany provide outputs which enable to follow changes in runoff. The three basins range in area from 100 to 200 km2 and the experimental basin Liz with an area of 0.99 km2. The selected experimental catchments are situated in or close to the National Park of the ?umava Mts. This region is described also in Tesa? et al. (2006). Results indicate that changes in runoff appear to be related to damages in forest cover caused by wind disasters and insects damages.Daily time series used for simulations are approximately 40 years long and 20 years in the experimental basin. Two different models of the rainfall — runoff process have been used for simulations and the outputs provide comparable results. The models are the conceptual model Sacramento (Burnash, 1995) and the model BROOK’90 (Federer, 1993). The second model distinguishes the details concerning evapotranspiration, including transpiration, rain and snow interception and snow and soil evaporation.The indicated runoff changes seem to be rather complex. After deforestation the volume of runoff generally increases and peak flows of floods are higher, but low flow in rainless periods show complicated courses.  相似文献   

8.
Aims Our objective was to estimate the carbon storage in the forest tree layer in Qinghai Province, China. Methods Based on forest resource inventory data and field investigation data, we estimated the carbon storage, sequestration rate and potentials in the forest tree layer in the Qinghai Province. Important findings The carbon density and total carbon storage of forest tree layer in Qinghai Province was 76.54 Mg·hm-2 and 27.38 Tg, respectively, of which four forest types (Picea spp. forest, Cupressus funebris forest, Betula spp. forest and Populus spp. forest) accounted for 86.67% while their areas were 96.23% of total forest areas in Qinghai. The carbon density and carbon storage of Picea spp. forest was 106.93 Mg·hm-2 and 14.78 Tg, respectively, which was the largest among all forest types. The carbon storage of the forest tree layer at different stand ages followed the sequence of over-mature forest > middle-aged forest > mature forest > near-mature forest > young forest. In addition, the carbon storage of forest tree layer in the province increased from 23.30 Tg in 2003 to 27.38 Tg in 2011. The average annual growth of carbon and carbon sequestration rate were 0.51 Tg and 1.06 Mg·hm-2·a-1, respectively. The maximum and minimum of carbon sequestration rate were respectively found in Cupressus funebris forest (0.44 Mg·hm-2·a-1) and Betula spp. forest (-1.06 Mg·hm-2·a-1). The mean carbon sequestration potential reached 8.50 Tg in 2011, with the highest value found in Picea spp. forest (3.40 Tg). These findings suggested high carbon sequestration potential of forest tree layer in Qinghai Province. Therefore, the carbon storage in Qinghai Province could be increased through better forest management and utilization. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

9.
By means of ordination and classification techniques, the relationships between climate, soils, human activities and vegetation along an altitudinal gradient of the Venezuelan páramos are analyzed and interpreted. The altitudinal gradient chosen is characterized by decrease of temperature, precipitation, soil fertility, soil water-holding capacity, and plant cover as altitude increases. The ordination results suggest vegetation changes to be primarily related to environmental changes occurring with altitude, and secondly to disturbances caused mainly by grazing. Some results point toward a disjunction in the vegetational gradient occurring at ca. 3 500 m.a.s.l. and separating low and high páramo. This disjunction might have been caused by the glacial history of the páramos and the occurrence of frequent night-frosts.The soil samples were kindly analyzed by the Laboratorio de Edafologia, Centro Nacional de Investigaciones Agropecuarias. Help in plant identification was generously obtained from the specialists of Instituto Botánico, Instituto Nacional de Parques, Caracas.Nomenclature follows Vareschi (1970).Acknowledgements: This work was supported by the Decanato de Investigaciones, Universidad Simón Bolivar. I wish to thank A. Pacheco for help in the field sampling. Dr O. Arenas help was invaluable in the mathematical treatment of the data. Drs A. Vivas and J. M. B. Smith provided useful criticism to an earlier version of this work.  相似文献   

10.
Life zones and their changes in distribution in north-east China were studied based on climate–vegetation relationships. The warmth index (WI) and aridity index (the ratio of evaporation [evaporation rate, ER] to precipitation) were used to represent the site condition. The typical site condition of each vegetation type was determined as the classification criterion. The boundaries of the four potential vegetation zones were estimated based on the combinations of WI and ER in relation to vegetation (i.e. cold-temperate conifer forest zone, temperate broad-leaved conifer mixed forest zone, warm-temperate deciduous forest zone, and temperate steppe zone). The distribution changes in vegetation zone caused by human activities were estimated by comparing the potential vegetation with the actual one. The percentage cover of forest has shrunk from about 70% to the present 27%. About 23% of the study area was replaced by agricultural vegetation and industrial use. Nearly half of the region could have been covered by broad-leaved conifer mixed forest which was shrunk to a small area, less than 5% of the region. The broad-leaved deciduous forest zone in the southern part could have occupied about 7% of the area, and had almost no virgin stand.  相似文献   

11.
Aims This study was conducted to investigate carbon stocks in forest ecosystems of different stand ages in Anhui Province, and to identify the carbon sequestration potential of climax forests controlled by the natural environment conditions. Methods Data were collected based on field investigations and simulations were made with the BIOME4 carbon cycle model. Important findings Currently, the total forest carbon stocks in Anhui Province amounts to 714.5 Tg C: 402.1 Tg C in vegetation and 312.4 Tg C in soil. Generally, both the total and vegetation carbon density exhibit an increasing trend with the natural growth of forest stands. Soil carbon density increases from young to near mature forests, and then gradually decreases thereafter. Young and middle-aged forests account for 75% of the total forest area in Anhui Province, with potentially an additional 125.4 Tg C to be gained after the young and middle-aged forests reach near mature stage. Results of BIOME4 simulations show that potentially an additional 245.7 Tg C, including 153.7 Tg C in vegetation and 92 Tg C in soil, could be gained if the current forests are transformed into climax forest ecosystems in Anhui Province.  相似文献   

12.
This study investigated a typical pine-oak mosaic mixed forest in the Qinling Mountains, China. In the sample plot, the population structure and spatial distribution of the stems were analyzed for the predominant species, to identify the mechanisms of species coexistence and successional trends of the forest. The population structures of all species were bimodally distributed, with young trees (DBH <1 cm) more abundant than older trees. The population structures of Quercus aliena var. acuteserrata was bimodal and rather continuous. However, Pinus tabuliformis and Pinus armandii were discontinuously bimodal, with distinct size deficiencies. Q. aliena var. acuteserrata trees were clumped throughout the plot, although those of P. tabuliformis and P. armandii were clumped at small scales. Notable negative spatial associations between Q. aliena var. acuteserrata and P. tabuliformis were found at almost scales. P. armandii and Q. aliena var. acuteserrata were negatively spatially associated at small scales but positively associated at large scales. Our findings suggest that interspecific competition gradually develops among the predominant tree species. The dynamics of the pine-oak mosaic mixed forest formed a mosaic distribution of uniformly mixed types, with the slow infiltration of Q. aliena var. acuteserrata populations that would eventually establish a pure stand.  相似文献   

13.
Aims Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi. Methods A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression. Important findings The total SOC storage in the main forests in Guangxi was 1 686.88 Tg, and the mean SOC density was 124.70 Mg•hm2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil >lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

14.
We conducted an 8-year exclosure experiment (1999–2006) in a forest–tundra ecotonal area in northwestern Finnish Lapland to study the effects of reindeer grazing on vegetation in habitats of variable productivity and microhabitat structure. The experimental sites included tundra heath, frost heath and riparian habitats, and the two latter habitats were characterized by hummock-hollow ground forms. The total cover of vegetation, cover of willow (Salix spp.), dwarf birch (Betula nana), dwarf shrubs, forbs and grasses (Poaceae spp.) increased in exclosures in all habitats. The increase in the total cover of vegetation and in the covers of willow and dwarf birch tended to be greatest in the least productive tundra heath. Opposing to the increase in the dominant vascular plant groups, the cover and species number of bryophytes decreased in exclosures. We conclude that the effects of reindeer grazing on vegetation composition depend on environmental heterogeneity and the responses vary among plant groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Based on the analysis of 600 vegetation plots using the method of Braun-Blanquet (1964) the composition of the whole vascular forest plant flora with about 1220 species was studied in the forests of Mt. Kilimanjaro. The altitudinal distribution of all strata (trees, shrubs, epiphytes, lianas and herbs) along a transect of 2400 m is discussed with respect to altitudinal zonation and ecological factors. With uni-dimensionally constraint clustering significant discontinuities were revealed that occurred simultaneously in the different strata. Thus even in structurally highly complex, multilayered tropical montane forests distinct community units exist that can be surveyed and classified by the Braun-Blanquet approach. This observed zonation was significantly correlated with altitude, temperature and soil acidity (pH); rainfall was of importance in particular for the zonation of epiphytes. Other key factors were humidity (influenced by stable cloud condensation belts) and minimum temperature (in particular the occurrence of frost at 2700 m altitude upslope). The contrary results of other transect studies in East Africa in respect to continuity of change in floristic composition appear to be caused by different sampling methods and intensities or mixing of data from areas with different climate conditions, whereas species richness did not influence the clarity of floristic discontinuities on Kilimanjaro and other parts of East Africa.  相似文献   

17.
18.
We have examined the relationship between the history of fluvial disturbance and understory vegetation in a riparian forest. The study site was divided into three sites, by use of aerial photographs and topographical maps, with different histories of fluvial disturbance: (1) Fagus-type on land that has not been flooded for the last 39 years, at least; (2) Populus-type on land that has not been flooded since debris flow occurred 34 years ago; and (3) Salix-type on land that has been flooded periodically from an abandoned channel since debris flow occurred 34 years ago. Species richness in the Salix-type was significantly higher than in the other types. Detrended correspondence analysis revealed obvious floristic differences among the three canopy types. Canonical correspondence analysis showed that herbaceous species were mainly found on lower plots with high moss cover, implying that moss layers may capture seeds transported by the stream. Tall herbs occurred in less shaded plots and on higher plots, suggesting that their rapid growth prevented the occurrence of other species. Fagus-type was dominated by species with ingested fruits which depended on animals for their dispersal. Populus and Salix-types were dominated by species with wind dispersal or no dispersal mechanism, which depended on physical phenomena for dispersal. Attributes of current understory vegetation were connected with historical events, suggesting that riparian vegetation reflects the history of fluvial disturbance.  相似文献   

19.
Of the twelve species ofChamaedorea palm recorded for Belize, three are of international economic value because their cut leaves (xaté) are traded in the floricultural industry. Traditionally, Belize has not harvested xaté, the industry being based in Mexico and Guatemala. However, a decline in wild xaté stocks in these countries means Guatemalan leaf harvesters now illegally harvest xaté in Belize. To assess the local abundance of the BelizeanChamaedorea resource, its economic value, and the extent to which it has been illegally harvested, 209 plots measuring 20 meters (m) by 20 m were established in the Greater Maya Mountains (GMM) in western Belize, which includes the Chiquibul Forest Reserve (CFR). We estimate that 37.8 million leaves with a value of U.S. 0.3 million to xateros have been extracted from the CFR. The standing export value is calculated as U.S.0.3 million to xateros have been extracted from the CFR. The standing export value is calculated as U.S. 1.8 million for the CFR and U.S. $5 million for the GMM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号