首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rok1p is a putative RNA helicase required for rRNA processing.   总被引:21,自引:7,他引:14       下载免费PDF全文
The synthesis of ribosomes involves many small nucleolar ribonucleoprotein particles (snoRNPs) as transacting factors. Yeast strains lacking the snoRNA, snR10, are viable but are impaired in growth and delayed in the early pre-rRNA cleavages at sites A0, A1, and A2, which lead to the synthesis of 18S rRNA. The same cleavages are inhibited by genetic depletion of the essential snoRNP protein Gar1p. Screens for mutations showing synthetic lethality with deletion of the SNR10 gene or with a temperature-sensitive gar1 allele both identified the ROK1 gene, encoding a putative, ATP-dependent RNA helicase of the DEAD-box family. The ROK1 gene is essential for viability, and depletion of Rok1p inhibits pre-rRNA processing at sites A0, A1, and A2, thereby blocking 18S rRNA synthesis. Indirect immunofluorescence by using a ProtA-Rok1p construct shows the protein to be predominantly nucleolar. These results suggest that Rok1p is required for the function of the snoRNP complex carrying out the early pre-rRNA cleavage reactions.  相似文献   

2.
A Pause  N Sonenberg 《The EMBO journal》1992,11(7):2643-2654
eIF-4A is a translation initiation factor that exhibits bidirectional RNA unwinding activity in vitro in the presence of another translation initiation factor, eIF-4B and ATP. This activity is thought to be responsible for the melting of secondary structure in the 5' untranslated region of eukaryotic mRNAs to facilitate ribosome binding. eIF-4A is a member of a fast growing family of proteins termed the DEAD family. These proteins are believed to be RNA helicases, based on the demonstrated in vitro RNA helicase activity of two members (eIF-4A and p68) and their homology in eight amino acid regions. Several related biochemical activities were attributed to eIF-4A: (i) ATP binding, (ii) RNA-dependent ATPase and (iii) RNA helicase. To determine the contribution of the highly conserved regions to these activities, we performed site-directed mutagenesis. First we show that recombinant eIF-4A, together with recombinant eIF-4B, exhibit RNA helicase activity in vitro. Mutations in the ATPase A motif (AXXXXGKT) affect ATP binding, whereas mutations in the predicted ATPase B motif (DEAD) affect ATP hydrolysis. We report here that the DEAD region couples the ATPase with the RNA helicase activity. Furthermore, two other regions, whose functions were unknown, have also been characterized. We report that the first residue in the HRIGRXXR region is involved in ATP hydrolysis and that the SAT region is essential for RNA unwinding. Our results suggest that the highly conserved regions in the DEAD box family are critical for RNA helicase activity.  相似文献   

3.
mRNA degradation is an important control point in the regulation of gene expression and has been shown to be linked to the process of translation. One clear example of this linkage is the observation that nonsense mutations in a gene can accelerate the decay of the corresponding mRNA. In the yeast Saccharomyces cerevisiae, the product of the UPF1 gene, harboring zinc finger, NTP hydrolysis, and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. As a first step toward understanding the molecular and biochemical mechanism of nonsense-mediated mRNA decay, we have purified Upf1p from a yeast extract and characterized its nucleic acid-dependent NTPase activity, helicase activity, and nucleic acid binding properties. The results presented in this paper demonstrate that Upf1p contains both RNA- and DNA-dependent ATPase activities and RNA and DNA helicase activities. In the absence of ATP, Upf1p binds to single-stranded RNA or DNA, whereas hydrolysis of ATP facilitates its release from single-stranded nucleic acid. Based on these results, the role of Upf1p's biochemical activities in mRNA decay and translation are discussed.  相似文献   

4.
mRNA degradation is an important control point in the regulation of gene expression and has been linked to the process of translation. One clear example of this linkage is the nonsense-mediated mRNA decay pathway, in which nonsense mutations in a gene can reduce the abundance of the mRNA transcribed from that gene. For the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. Biochemical analysis of the wild-type Upf1p demonstrates that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs, leading to the production of enough functional product to overcome an auxotrophy resulting from a nonsense mutation. A genetic and biochemical study of the UPF1 gene was undertaken in order to understand the mechanism of Upf1p function in the nonsense-mediated mRNA decay pathway. Our analysis suggests that Upf1p is a multifunctional protein with separable activities that can affect mRNA turnover and nonsense suppression. Mutations in the conserved helicase motifs of Upf1p that inactivate its mRNA decay function while not allowing suppression of leu2-2 and tyr7-1 nonsense alleles have been identified. In particular, one mutation located in the ATP binding and hydrolysis motif of Upf1p that changed the aspartic and glutamic acid residues to alanine residues (DE572AA) lacked ATPase and helicase activities, and the mutant formed a Upf1p:RNA complex in the absence of ATP; surprisingly, however, the Upf1p:RNA complex dissociated as a consequence of ATP binding. This result suggests that ATP binding, independent of its hydrolysis, can modulate Upf1p:RNA complex formation for this mutant protein. The role of the RNA binding activity of Upf1p in modulating nonsense suppression is discussed.  相似文献   

5.
The essential Saccharomyces cerevisiae PRP22 gene encodes a 1145-amino acid DEXH box RNA helicase. Prp22p plays two roles during pre-mRNA splicing as follows: it is required for the second transesterification step and for the release of mature mRNA from the spliceosome. Whereas the step 2 function of Prp22p does not require ATP hydrolysis, spliceosome disassembly is dependent on the ATPase and helicase activities. Here we delineate a minimal functional domain, Prp22(262-1145), that suffices for the activity of Prp22p in vivo when expressed under the natural PRP22 promoter and for pre-mRNA splicing activity in vitro. The biologically active domain lacks an S1 motif (residues 177-256) that had been proposed to play a role in RNA binding by Prp22p. The deletion mutant Prp22(351-1145) can function in vivo when provided at a high gene dosage. We suggest that the segment from residues 262 to 350 enhances Prp22p function in vivo, presumably by targeting Prp22p to the spliceosome. We characterize an even smaller catalytic domain, Prp22(466-1145) that suffices for ATP hydrolysis, RNA binding, and RNA unwinding in vitro and for nuclear localization in vivo but cannot by itself support cell growth. However, the ATPase/helicase domain can function in vivo if the N-terminal region Prp22(1-480) is co-expressed in trans.  相似文献   

6.
7.
The yeast PRP44 gene, alternatively named as BRR2, SLT22, RSS1, or SNU246, encodes a 246-kDa protein with putative RNA helicase function during pre-mRNA splicing. The protein is a typical DEAD/H family member, but unlike most other members of this family, it contains two putative RNA helicase domains, each with a highly conserved ATPase motif. Prior to this study little was known about functional roles for these two domains. We present genetic and biochemical evidence that ATPase motifs of only the first helicase domain are required for cell viability and pre-mRNA splicing. Overexpression of mutations in the first domain results in a dominant negative phenotype, and extracts from these mutant strains inhibit in vitro pre-mRNA splicing. In vitro analyses of affinity purified proteins revealed that only the first helicase domain possesses poly (U)-dependent ATPase activity. Overexpression of a dominant negative protein in vivo reduces the relative abundance of free U4 and U6 snRNA with a concomitant accumulation of the U4/U6 duplex. Accumulation of the U4/U6 duplex was relieved by overexpression of wild-type Prp44p. Three DEAD/H box proteins, Prp16p, Prp22p and Prp44p, have previously been shown to affect U4/U6 unwinding activity in vitro. The possible role of these proteins in mediating this reaction in vivo was explored following induced expression of ATPase domain mutants in each of these. Although overexpression of the mutant form of either Prp16p, Prp22p, or Prp44p was lethal, only expression of the mutant Prp44p resulted in accumulation of the U4/U6 helix. Our results, when combined with previously published in vitro results, support a direct role for Prp44p in unwinding of the U4/U6 helix.  相似文献   

8.
Dhh1 is a highly conserved DEAD-box protein that has been implicated in many processes involved in mRNA regulation. At least some functions of Dhh1 may be carried out in cytoplasmic foci called processing bodies (P-bodies). Dhh1 was identified initially as a putative RNA helicase based solely on the presence of conserved helicase motifs found in the superfamily 2 (Sf2) of DEXD/H-box proteins. Although initial mutagenesis studies revealed that the signature DEAD-box motif is required for Dhh1 function in vivo, enzymatic (ATPase or helicase) or ATP binding activities of Dhh1 or those of any its many higher eukaryotic orthologues have not been described. Here we provide the first characterization of the biochemical activities of Dhh1. Dhh1 has weaker RNA-dependent ATPase activity than other well characterized DEAD-box helicases. We provide evidence that intermolecular interactions between the N- and C-terminal RecA-like helicase domains restrict its ATPase activity; mutation of residues mediating these interactions enhanced ATP hydrolysis. Interestingly, the interdomain interaction mutant displayed enhanced mRNA turnover, RNA binding, and recruitment into cytoplasmic foci in vivo compared with wild type Dhh1. Also, we demonstrate that the ATPase activity of Dhh1 is not required for it to be recruited into cytoplasmic foci, but it regulates its association with RNA in vivo. We hypothesize that the activity of Dhh1 is restricted by interdomain interactions, which can be regulated by cellular factors to impart stringent control over this very abundant RNA helicase.  相似文献   

9.
The human transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen. The functional unit of TAP is a heterodimer composed of the TAP1 and TAP2 subunits, both of which are members of the ABC-transporter family. ABC-transporters are ATP-dependent pumps, channels, or receptors that are composed of four modules: two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Although the TMDs are rather divergent in sequence, the NBDs are conserved with respect to structure and function. Interestingly, the NBD of TAP1 contains mutations at amino acid positions that have been proposed to be essential for catalytic activity. Instead of a glutamate, proposed to act as a general base, TAP1 contains an aspartate and a glutamine instead of the conserved histidine, which has been suggested to act as the linchpin. We used this degeneration to evaluate the individual contribution of these two amino acids to the ATPase activity of the engineered TAP1-NBD mutants. Based on our results a catalytic hierarchy of these two fundamental amino acids in ATP hydrolysis of the mutated TAP1 motor domain was deduced.  相似文献   

10.
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.  相似文献   

11.
MutL homologs belong to a family of proteins that share a conserved ATP binding site. We demonstrate that amino-terminal domains of the yeast MutL homologs Mlh1 and Pms1 required for DNA mismatch repair both possess independent, intrinsic ATPase activities. Amino acid substitutions in the conserved ATP binding sites concomitantly reduce ATP binding, ATP hydrolysis, and DNA mismatch repair in vivo. The ATPase activities are weak, consistent with the hypothesis that ATP binding is primarily responsible for modulating interactions with other MMR components. Three approaches, ATP hydrolysis assays, limited proteolysis protection, and equilibrium dialysis, provide evidence that the amino-terminal domain of Mlh1 binds ATP with >10-fold higher affinity than does the amino-terminal domain of Pms1. This is consistent with a model wherein ATP may first bind to Mlh1, resulting in events that permit ATP binding to Pms1 and later steps in DNA mismatch repair.  相似文献   

12.
CDC48/p97 is an essential AAA-ATPase chaperone that functions in numerous diverse cellular activities through its interaction with specific adapter proteins. The ubiquitin regulatory X (UBX)-containing protein, PUX1, functions to regulate the hexameric structure and ATPase activity of AtCDC48. To characterize the biochemical mechanism of PUX1 action on AtCDC48, we have defined domains of both PUX1 and AtCDC48 that are critical for interaction and oligomer disassembly. Binding of PUX1 to AtCDC48 was mediated through a region containing both the UBX domain and the immediate C-terminal flanking amino acids (UBX-C). Like other UBX domains, the primary binding site for the UBX-C of PUX1 is the N(a) domain of AtCDC48. Alternative plant PUX protein UBX domains also bind AtCDC48 through the N terminus but were found not to be able to substitute for the action imparted by the UBX-C of PUX1 in hexamer disassembly, suggesting unique features for the UBX-C of PUX1. We propose that the PUX1 UBX-C domain modulates a second binding site on AtCDC48 required for the N-terminal domain of PUX1 to interact with and promote dissociation of the AtCDC48 hexamer. Utilizing Atcdc48 ATP hydrolysis and binding mutants, we demonstrate that PUX1 binding was not affected but that hexamer disassembly was significantly influenced by the ATP status of AtCDC48. ATPase activity in both the D1 and the D2 domains was critical for PUX1-mediated AtCDC48 hexamer disassembly. Together these results provide new mechanistic insight into how the hexameric status and ATPase activity of AtCDC48 are modulated.  相似文献   

13.
The 97-kDa valosin-containing protein (p97-VCP) belongs to the AAA (ATPases associated with various cellular activities) family and acts as a molecular chaperone in diverse cellular events, including ubiquitinproteasome-mediated degradation. We previously showed that VCP contains a substrate-binding domain, N, and two conserved ATPase domains, D1 and D2, of which D2 is responsible for the major enzyme activity. VCP has a barrel-like structure containing two stacked homo-hexameric rings made of the D1 and D2 domains, and this structure is essential for its biological functions. During ATPase cycles, VCP undergoes conformational changes that presumably apply tensions to the bound substrate, leading to the disassembly of protein complexes or unfolding of the substrate. How ATPase activity is coupled with the conformational changes in VCP complex and the D1 and D2 rings is not clear. In this report, we took biochemical approaches to study the structure of VCP in different nucleotide conditions to depict the conformational changes in the ATPase cycles. In contrast to many AAA chaperones that require ATP/ADP to form oligomers, both wild type VCP and ATP-binding site mutants can form hexamers without the addition of nucleotide. This nucleotide-independent hexamerization requires an intact D1 and the down-stream linker sequence of VCP. Tryptophan fluorescence and trypsin digestion analyses showed that ATP/ADP binding induces dramatic conformational changes in VCP. These changes do not require the presence of an intact ATP-binding site in D1 and is thus mainly attributed to the D2 domain. We propose a model whereby D1, although undergoing minor conformational changes, remains as a relatively trypsin-resistant hexameric ring throughout the ATPase cycle, whereas D2 only does so when it binds to ATP or ADP. After ADP is released at the end of the ATP hydrolysis, D2 ring is destabilized and adopts a relatively flexible and open structure.  相似文献   

14.
McClellan AJ  Brodsky JL 《Genetics》2000,156(2):501-512
The translocation of proteins across the yeast ER membrane requires ATP hydrolysis and the action of DnaK (hsp70) and DnaJ homologues. In Saccharomyces cerevisiae the cytosolic hsp70s that promote post-translational translocation are the products of the Ssa gene family. Ssa1p maintains secretory precursors in a translocation-competent state and interacts with Ydj1p, a DnaJ homologue. Although it has been proposed that Ydj1p stimulates the ATPase activity of Ssa1p to release preproteins and engineer translocation, support for this model is incomplete. To this end, mutations in the ATP-binding pocket of SSA1 were constructed and examined both in vivo and in vitro. Expression of the mutant Ssa1p's slows wild-type cell growth, is insufficient to support life in the absence of functional Ssa1p, and results in a dominant effect on post-translational translocation. The ATPase activity of the purified mutant proteins was not enhanced by Ydj1p and the mutant proteins could not bind an unfolded polypeptide substrate. Our data suggest that a productive interaction between Ssa1p and Ydj1p is required to promote protein translocation.  相似文献   

15.
eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.  相似文献   

16.
Mismatch-repair (MMR) systems promote eukaryotic genome stability by removing errors introduced during DNA replication and by inhibiting recombination between nonidentical sequences (spellchecker and antirecombination activities, respectively). Following a common mismatch-recognition step effected by MutS-homologous Msh proteins, homologs of the bacterial MutL ATPase (predominantly the Mlh1p-Pms1p heterodimer in yeast) couple mismatch recognition to the appropriate downstream processing steps. To examine whether the processing steps in the spellchecker and antirecombination pathways might differ, we mutagenized the yeast PMS1 gene and screened for mitotic separation-of-function alleles. Two alleles affecting only the antirecombination function of Pms1p were identified, one of which changed an amino acid within the highly conserved ATPase domain. To more specifically address the role of ATP binding/hydrolysis in MMR-related processes, we examined mutations known to compromise the ATPase activity of Pms1p or Mlh1p with respect to the mitotic spellchecker and antirecombination activities and with respect to the repair of mismatches present in meiotic recombination intermediates. The results of these analyses confirm a differential requirement for the Pms1p ATPase activity in replication vs. recombination processes, while demonstrating that the Mlh1p ATPase activity is important for all examined MMR-related functions.  相似文献   

17.
18.
Valosin-containing protein (VCP)/p97 is an AAA family ATPase that has been implicated in the removal of misfolded proteins from the endoplasmic reticulum and in membrane fusion. p97 forms a homohexamer whose protomers consist of an N-terminal (N) domain responsible for binding to effector proteins, followed by two AAA ATPase domains, D1 and D2. Small-angle X-ray scattering (SAXS) measurements of p97 in the presence of AMP-PNP (ATP state), ADP-AlF(x) (hydrolysis transition state), ADP, or no nucleotide reveal major changes in the positions of the N domains with respect to the hexameric ring during the ATP hydrolysis cycle. Nucleotide binding and hydrolysis experiments indicate that D2 inhibits nucleotide exchange by D1. The data suggest that the conversion of the chemical energy of ATP hydrolysis into mechanical work on substrates involves transmission of conformational changes generated by D2 through D1 to move N.  相似文献   

19.
Two ATP-binding domains are found in members of the family of ATP-dependent transport proteins, which includes P-glycoprotein and cystic fibrosis transmembrane conductance regulator. To investigate the involvement of the two ATP-binding domains in the ATPase activity of P-glycoprotein, full-length and the 5'-half of human MDR1 cDNA, which encodes P-glycoprotein, were fused with the Escherichia coli lacZ gene and expressed in NIH3T3 cells. Immunoprecipitated full-length P-glycoprotein beta-galactosidase showed ATPase activity with apparent specific activity of 180 nmol/mg/min, a value higher than previously reported, in the presence of phospholipids, suggesting that stabilization of the transmembrane domains is necessary for ATP hydrolysis. N-terminal half P-glycoprotein-beta-galactosidase also showed ability to hydrolyze ATP but with slightly lower specific activity. Both ATPase activities showed similar characteristics when the effect of several inhibitors was analyzed, indicating that the N-terminal ATP-binding domain contains all residues necessary to hydrolyze ATP without interacting with the C-terminal ATP-binding domain.  相似文献   

20.
CFTR (cystic fibrosis transmembrane conductance regulator), a member of the ABC (ATP-binding cassette) superfamily of membrane proteins, possesses two NBDs (nucleotide-binding domains) in addition to two MSDs (membrane spanning domains) and the regulatory 'R' domain. The two NBDs of CFTR have been modelled as a heterodimer, stabilized by ATP binding at two sites in the NBD interface. It has been suggested that ATP hydrolysis occurs at only one of these sites as the putative catalytic base is only conserved in NBD2 of CFTR (Glu1371), but not in NBD1 where the corresponding residue is a serine, Ser573. Previously, we showed that fragments of CFTR corresponding to NBD1 and NBD2 can be purified and co-reconstituted to form a heterodimer capable of ATPase activity. In the present study, we show that the two NBD fragments form a complex in vivo, supporting the utility of this model system to evaluate the role of Glu1371 in ATP binding and hydrolysis. The present studies revealed that a mutant NBD2 (E1371Q) retains wild-type nucleotide binding affinity of NBD2. On the other hand, this substitution abolished the ATPase activity formed by the co-purified complex. Interestingly, introduction of a glutamate residue in place of the non-conserved Ser573 in NBD1 did not confer additional ATPase activity by the heterodimer, implicating a vital role for multiple residues in formation of the catalytic site. These findings provide the first biochemical evidence suggesting that the Walker B residue: Glu1371, plays a primary role in the ATPase activity conferred by the NBD1-NBD2 heterodimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号