首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purine salvage pathways in cultured endothelial cells of macrovascular (pig aorta) and microvascular (guinea pig coronary system) origin were investigated by measuring the incorporation of radioactive purine bases (adenine or hypoxanthine) or nucleosides (adenosine or inosine) into purine nucleotides. These precursors were used at initial extracellular concentrations of 0.1, 5, and 500 microM. In both types of endothelial cells, purine nucleotide synthesis occurred with all four substrates. Aortic endothelial cells salvaged adenine best among purines and nucleosides when applied at 0.1 microM. At 5 and 500 microM, adenosine was the best precursor. In contrast, microvascular endothelial cells from the coronary system used adenosine most efficiently at all concentrations studied. The synthetic capacity of salvage pathways was greater than that of the de novo pathway. As measured using radioactive formate or glycine, de novo synthesis of purine nucleotides was barely detectable in aortic endothelial cells, whereas it readily occurred in coronary endothelial cells. Purine de novo synthesis in coronary endothelial cells was inhibited by physiological concentrations of purine bases and nucleosides, and by ribose or isoproterenol. The isoproterenol-induced inhibition was prevented by the beta-adrenergic receptor antagonist propranolol. The end product of purine catabolism in aortic endothelial cells was found to be hypoxanthine, whereas coronary endothelial cells degraded hypoxanthine further to xanthine and uric acid, a reaction catalyzed by the enzyme xanthine dehydrogenase.  相似文献   

2.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

3.
The procyclic forms of Trypanosoma brucei gambiense do not incorporate glycine or serine into ribonucleotides. Although de novo purine synthesis does not occur, all purine bases and ribonucleotides are interconverted, indicating the presence of active salvage pathways. Guanine is actively deaminated to xanthine by guanase activity. Purine ribonucleosides are cleaved to their respective free bases. The order of salvage efficiency for purine bases and their respective ribonucleotides is: adenine > hypoxanthine > guanine > xanthine.  相似文献   

4.
E Zoref-Shani  O Sperling 《Enzyme》1980,25(6):413-418
Cultured fibroblasts with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency exhibited acceleration of purine synthesis de novo, absence of salvage IMP synthesis from hypoxanthine, but normal total IMP synthesis. Cells with phosphoribosylpyrophosphate synthetase superactivity exhibited acceleration of both de novo and salvage IMP synthesis and increased total IMP synthesis. The study of mutant cells furnished evidence that in normal as well as mutant cells, GMP and AMP are not converted to each other in significant amounts and that these nucleotides are not degraded by nucleotidases. Purine nucleotide degradation in fibroblasts occurs mainly by dephosphorylation of IMP. In HGPRT-containing cells, salvage IMP synthesis from preformed and exogenously supplied hypoxanthine is the main source for IMP production.  相似文献   

5.
Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.  相似文献   

6.
Hypoxanthine is present in preparations of follicular fluid and has been shown to suppress the spontaneous meiotic maturation of mammalian oocytes in vitro. The present experiments examined the possible role of hypoxanthine metabolism in mediating this meiotic arrest. Four putative inhibitors of the enzyme, hypoxanthine phosphoribosyltransferase (HPRT), which metabolizes hypoxanthine to inosine monophosphate, were tested on lysates of oocyte-cumulus cell complexes. At a concentration of 1 mM, 6-mercapto-9-(tetrahydro-2-furyl)-purine (MPTF) and 6-mercaptopurine (6-MP) suppressed enzymatic activity by 86% and 98%, respectively, while 6-azauridine and 2,6-bis-(hydroxyamino)-9-β-D-ribofuranosyl-purine had no effect. MPTF and 6-MP increased the inhibitory effect of hypoxanthine on germinal vesicle breakdown, but the other agents did not. The 2 active agents had similar effects on salvage activity and hypoxanthine-maintained meiotic arrest in denuded oocytes. Also, oocytes from XO mice were more sensitive to the meiosis-arresting action of hypoxanthine than oocytes from XX littermates, which have twice the HPRT activity. The actions of the HPRT inhibitors were not due to their conversion to nucleotides via HPRT and negative feedback on purine de novo synthesis, because azaserine and 6-methylmercaptopurine riboside, which are more potent inhibitors of de novo synthesis, had a stimulatory, rather than inhibitory, effect on hypoxanthine-arrested oocytes. Furthermore, several lines of evidence indicate that metabolism of hypoxanthine to xanthine and uric acid by xanthine oxidase does not mediate the inhibitory action of this purine base on meiotic maturation. The data therefore suggest that nonmetabolized hypoxanthine is responsible for the meiotic arrest observed, most likely through suppression of cAMP degradation. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

8.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

9.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

10.
We have studied purine metabolism in the culture forms of Leishmania donovani and Leishmania braziliensis. These organisms are incapable of synthesizing purines de novo from glycine, serine, or formate and require an exogenous purine for growth. This requirement is better satisfied by adenosine or hypoxanthine than by guanosine. Bothe adenine and inosine are converted to a common intermediate, hypoxanthine, before transformation to nucleotides. This is due to the activity of an adenine aminohydrolase (EC 3.5.4.2), a rather unusual finding in a eukaryotic cell. There is a preferential synthesis of adenine nucleotides, even when guanine or xanthine are used as precursors.The pathways of purine nucleotide interconversions in these Leishmania resemble those found in mammalian cells except for the absence of de novo purine biosynthesis and the presence of an adenine-deaminating activity.  相似文献   

11.
Cellular brassinolide (BL) levels regulate the development of Brassica napus microspore-derived embryos (MDEs). Synthesis and degradation of nucleotides were measured on developing MDEs treated with BL or brassinazole (BrZ), a biosynthetic inhibitor of BL. Purine metabolism was investigated by following the metabolic fate of 14C-labelled adenine and adenosine, substrates of the salvage pathway, and inosine, an intermediate of both salvage and degradation pathways. For pyrimidine, orotic acid, uridine and uracil were employed as markers for the de novo (orotic acid), salvage (uridine and uracil), and degradation (uracil) pathways. Our results indicate that utilization of adenine, adenosine, and uridine for nucleotides and nucleic acids increased significantly in BL-treated embryos at day 15 and remained high throughout the culture period. These metabolic changes were ascribed to the activities of the respective salvage enzymes: adenine phosphoribosyltransferase (EC 2.4.2.7), adenosine kinase (EC 2.7.1.20), and uridine kinase (EC 2.7.1.48), which were induced by BL applications. The BL promotion of salvage synthesis was accompanied by a reduction in the activities of the degradation pathways, suggesting the presence of competitive anabolic and catabolic mechanisms utilizing the labelled precursors. In BrZ-treated embryos, with depleted BL levels, the salvage activity of both purine and pyrimidine nucleotides was reduced and this was associated to structural abnormalities and poor embryonic performance. In these embryos, the activities of major salvage enzymes were consistently lower to those measured in their control (untreated) counterparts.  相似文献   

12.
The ability of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells to drive their total purine requirements from inosine 5'-monophosphate, inosine, or hypoxanthine was compared. Inosine 5'-monophosphate first must be converted to inosine by the action of the enzyme ecto-5'-nucleotidase before it can be transported into the cell; inosine and hypoxanthine, however, can be transported directly. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and to make the cells dependent on an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 30 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA or [3H]leucine incorporation into protein at rates equal to that of untreated control cultures. Similar results were found when azaserine was used to inhibit purine synthesis de novo, and thus DNA synthesis. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells, and suggest that this enzyme may be important for purine salvage when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

13.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

14.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

15.
Acholeplasma laidlawii B-PG9 was examined for 16 cytoplasmic enzymes with activity for purine salvage and interconversion. Phosphoribosyltransferase activities for adenine, guanine, xanthine, and hypoxanthine were shown. Adenine, guanine, xanthine, and hypoxanthine were ribosylated to their nucleoside. Adenosine, inosine, xanthosine, and guanosine were converted to their base. No ATP-dependent phosphorylation of nucleosides to mononucleotides was found. However, PPi-dependent phosphorylation of adenosine, inosine, and guanosine to AMP, inosine monophosphate, and GMP, respectively, was detected. Nucleotidase activity for AMP, inosine monophosphate, xanthosine monophosphate, and GMP was also found. Interconversion of GMP to AMP was detected. Enzyme activities for the interconversion of AMP to GMP were not detected. Therefore, A. laidlawii B-PG9 cannot synthesize guanylates from adenylates or inosinates. De novo synthesis of purines was not detected. This study demonstrates that A. laidlawii B-PG9 has the enzyme activities for the salvage and limited interconversion of purines and, except for purine nucleoside kinase activity, is similar to Mycoplasma mycoides subsp. mycoides. This is the first report of a PPi-dependent nucleoside kinase activity in any organism.  相似文献   

16.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

17.
Malaria is caused by Plasmodium parasite infection. The human malarial parasite does not have a de novo pathway for synthesis of nucleotides and the purine salvage pathway enzyme hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) is critical for survival. In our efforts to find inhibitors of the malarial parasite HGXPRT, we have developed a simple but effective purification protocol for this protein expressed in Escherichia coli without an affinity tag. The protocol consists of tandem columns of anion exchange and immobilized Reactive Red 120 resins. The enzyme is inactive as isolated but can be activated by incubation with substrate(s).  相似文献   

18.
Utilizing phosphonacetyl- -aspartate (PALA), the transition state analog which specifically inhibits aspartate carbamyl transferase, we have shown that the preimplantation mouse embryo in culture has a functioning de novo pyridmidine biosynthetic pathway. This pathway accounts for some of the carbon dioxide fixation into nucleic acids previously described. Inhibition of de novo pyrimidine nucleotide synthesis during 2-cell to 8-cell development does not prevent morula development, but does prevent blastocyst development in nearly all embryos. Inhibition of the morula to blastocyst transition is most likely caused by a diminished pyrimidine nucleotide pool. Both de novo and salvage pathways appear active from the 2-cell embryo through blastocyst formation.  相似文献   

19.
Rates of purine salvage of adenine and hypoxanthine into the adenine nucleotide (AdN) pool of the different skeletal muscle phenotype sections of the rat were measured using an isolated perfused hindlimb preparation. Tissue adenine and hypoxanthine concentrations and specific activities were controlled over a broad range of purine concentrations, ranging from 3 to 100 times normal, by employing an isolated rat hindlimb preparation perfused at a high flow rate. Incorporation of [(3)H]adenine or [(3)H]hypoxanthine into the AdN pool was not meaningfully influenced by tissue purine concentration over the range evaluated (approximately 0.10-1.6 micromol/g). Purine salvage rates were greater (P < 0.05) for adenine than for hypoxanthine (35-55 and 20-30 nmol x h(-1) x g(-1), respectively) and moderately different (P < 0.05) among fiber types. The low-oxidative fast-twitch white muscle section exhibited relatively low rates of purine salvage that were approximately 65% of rates in the high-oxidative fast-twitch red section of the gastrocnemius. The soleus muscle, characterized by slow-twitch red fibers, exhibited a high rate of adenine salvage but a low rate of hypoxanthine salvage. Addition of ribose to the perfusion medium increased salvage of adenine (up to 3- to 6-fold, P < 0.001) and hypoxanthine (up to 6- to 8-fold, P < 0.001), depending on fiber type, over a range of concentrations up to 10 mM. This is consistent with tissue 5-phosphoribosyl-1-pyrophosphate being rate limiting for purine salvage. Purine salvage is favored over de novo synthesis, inasmuch as delivery of adenine to the muscle decreased (P < 0.005) de novo synthesis of AdN. Providing ribose did not alter this preference of purine salvage pathway over de novo synthesis of AdN. In the absence of ribose supplementation, purine salvage rates are relatively low, especially compared with the AdN pool size in skeletal muscle.  相似文献   

20.
Procedures for assaying the rate of purine de novo synthesis in cultured fibroblast cells have been compared. These were (i) the incorporation of [(14)C]-glycine or [(14)C]formate in alpha-N-formylglycinamide ribonucleotide (an intermediate in the purine synthetic pathway) and (ii) the incorporation of [(14)C]-formate into newly synthesised cellular purines and purines excreted by the cell into the medium. Fibroblast cells, derived from patients with a deficiency of hypoxanthine phosphoribosyltransferase (HPRT-) (EC 2.4.2.8) and increased rates of purine de novo synthesis, were compared with fibroblasts from healthy subjects (HPRT+). Fetal calf serum, which was used to supplement the assay and cell growth medium, was found to contain sufficient quantities of the purine base hypoxanthine to inhibit purine de novo synthesis in HPRT+ cells. This inhibition was the basis of differentiation between HPRT- and HPRT+ cells. In the absence of added purine base, both cell types had similar capacities for purine de novo synthesis. This result contrasts with the increased rates of purine de novo synthesis reported for a number of human HPRT- cells in culture but conforms recent studies made on human HPRT- lymphoblast cells. The intracellular concentration and utilisation of 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP), a substrate and potential controlling factor for purine de novo synthesis, were determined in HPRT- and HPRT+ cells. The rate of utilisation of P-Rib-PP in the salvage of free purine bases was far greater than that in purine de novo synthesis. Although HPRT- cells had a 3-fold increase in P-Rib-PP content, the rate of P-Rib-PP generation was similar to HPRT+ cells. Thus, in fibroblasts, the concentration of P-Rib-PP appears to be critical in the control of de novo purine synthesis and its preferential utilisation in the HPRT reaction limits its availability for purine de novo synthesis. In vivo, HPRT+ cells, in contrast to HPRT- cells, may be operating purine de novo synthesis at a reduced rate because of their ability to reutilise hypoxanthine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号