首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial regions of the mRNA encoding a major part of translation elongation factor 2 (EF-2) from a mitochondrion-lacking protozoan, Giardia lamblia, were amplified by polymerase chain reaction, and their primary structures were analyzed. The deduced amino acid sequence was aligned with other eukaryotic and archaebacterial EF-2's, and the phylogenetic relationships among eukaryotes were inferred by the maximum likelihood (ML) and the maximum parsimony (MP) methods. The ML analyses using six different models of amino acid substitutions and the MP analysis consistently suggest that among eukaryotic species being analyzed, G. lamblia is likely to have diverged from other higher eukaryotes on the early phase of eukaryotic evolution.   相似文献   

2.
3.
Phylogenetic placements of archaebacteria and protozoa are important in understanding the origin and early evolution of eukaryotes. These problems have been analyzed mainly by comparisons of small subunit ribosomal RNA (SrRNA) sequences. However, the SrRNA phylogeny may sometimes be unreliable, especially when base compositions are biased among species. Because it is difficult to take full account of the bias in inferring the SrRNA tree, alternative examinations using protein sequence data have been very much desired. We analyzed the phylogenetic relationship among eukaryotes, archaebacteria, and eubacteria by the ML method of protein phylogeny using amino acid sequence data of EF-1α/Tu and 2/G. The unrooted tree analyses of both the EF-1α/Tu and 2/G consistently demonstrated that the ‘eocyte’ tree, in which archaebacteria are not monophyletic but eocytes are closer to eukaryotes than to other archaebacteria, is very likely. Further analysis using a composite tree of EF-1α/Tu and 2/G suggested that archaebacteria are closer to eukaryotes than to eubacteria but are not monophyletic. These results clearly support the hypothesis that eukaryotes have evolved from the eocyte-like organism. We also analyzed a protozoan phylogeny including mitochondrion-lacking species by the ML method using EF-1α and EF-2 data sets, and demonstrated (a) that two mitochondrion-lacking species, G. plecoglossi (Microsporidians) and G. lamblia (Diplomonads) probably represent the first and the second earliest offshoots of eukaryotes, respectively; (b) that Trypanosoma is not likely to have diverged next to Giardia as suggested by the SrRNA tree, but shows high affinity with higher eukaryotes; and (c) that protein phylogeny would give a robust estimation because amino acid compositions of conservative proteins do not differ significantly among species.  相似文献   

4.
Accurate translation termination is essential for cell viability. In eukaryotes, this process is strictly maintained by two proteins, eukaryotic release factor 1 (eRF1), which recognizes all stop codons and hydrolyzes peptidyl-tRNA, and eukaryotic release factor 3 (eRF3), which is an elongation factor 1alpha (EF-1alpha) homolog stimulating eRF1 activity. To retrace the evolution of this core system, we cloned and sequenced the eRF3 genes from Trichomonas vaginalis (Parabasalia) and Giardia lamblia (Diplomonada), which are generally thought to be "early-diverging eukaryotes," as well as those from two ciliates (Oxytricha trifallax and Euplotes aediculatus). We also determined the sequence of the eRF1 gene for G. lamblia. Surprisingly, the G. lamblia eRF3 appears to have only one domain, corresponding to EF-1alpha, while other eRF3s (including the T. vaginalis protein) have an additional N-terminal domain, of 66-411 amino acids. Considering this novel eRF3 structure and our extensive phylogenetic analyses, we suggest that (1) the current translation termination system in eukaryotes evolved from the archaea-like version, (2) eRF3 was introduced into the system prior to the divergence of extant eukaryotes, including G. lamblia, and (3) G. lamblia might be the first eukaryotic branch among the organisms considered.  相似文献   

5.
Core histones of the amitochondriate protist, Giardia lamblia   总被引:3,自引:0,他引:3  
Genes coding for the core histones H2a, H2b, H3, and H4 of Giardia lamblia were sequenced. A conserved organism- and gene-specific element, GRGCGCAGATTTVGG, was found upstream of the coding region in all core histone genes. The derived amino acid sequences of all four histones were similar to their homologs in other eukaryotes, although they were among the most divergent members of this protein family. Comparative protein structure modeling combined with energy evaluation of the resulting models indicated that the G. lamblia core histones individually and together can assume the same three-dimensional structures that were established by X-ray crystallography for Xenopus laevis histones and the nucleosome core particle. Since G. lamblia represents one of the earliest-diverging eukaryotes in many different molecular trees, the structure of its histones is potentially of relevance to understanding histone evolution. The G. lamblia proteins do not represent an intermediate stage between archaeal and eukaryotic histones.  相似文献   

6.
The three deepest eukaryote lineages in small subunit ribosomal RNA phylogenies are the amitochondriate Microsporidia, Metamonada, and Parabasalia. They are followed by either the Euglenozoa (e.g., Euglena and Trypanosoma) or the Percolozoa as the first mitochondria-containing eukaryotes. Considering the great divergence of histone proteins in protozoa we have extended our studies of histones from Trypanosomes (Trypanosoma cruzi, Crithidia fasciculata and Leishmania mexicana) to the Metamonada Giardia lamblia, since Giardia is thought to be one of the most primitive eukaryotes. In the present work, the structure of G. lamblia chromatin and the histone content of the soluble chromatin were investigated and compared with that of higher eukaryotes, represented by calf thymus. The chromatin is present as nucleosome filaments which resemble the calf thymus array in that they show a more regular arrangement than those described for Trypanosoma. SDS-polyacrylamide gel electrophoresis and protein characterization revealed that the four core histones described in Giardia are in the same range of divergence with the histones from other lower eukaryotes. In addition, G. lamblia presented an H1 histone with electrophoretic mobility resembling the H1 of higher eukaryotes, in spite of the fact that H1 has a different molecular mass in calf thymus. Giardia also presents a basic protein which was identified as an HU-like DNA-binding protein usually present in eubacteria, indicating a chimaeric composition for the DNA-binding protein set in this species. Finally, the phylogenetic analysis of selected core histone protein sequences place Giardia divergence before Trypanosoma, despite the fact that Trypanosoma branch shows an acceleration in the evolutionary rate pointing to an unusual evolutionary behavior in this lineage.  相似文献   

7.
Summary Phylogenetic analyses of ribosomal RNA sequences have played an important role in the study of early evolution of life. However, Loomis and Smith suggested that the ribosomal RNA tree is sometimes misleading—especially when G+C content differs widely among lineages—and that a protein tree from amino acid sequences may be more reliable. In this study, we analyzed amino acid sequence data of elongation factor-1 by a maximum likelihood method to clarify branching orders in the early evolution of eukaryotes. Contrary to Sogin et al.'s tree of small-subunit ribosomal RNA, a protozoan species, Entamoeba histolytica, that lacks mitochondria was shown to have diverged from the line leading to eukaryotes with mitochondria before the latter separated into several kingdoms. This indicates that Entamoeba is a living relic of the earliest phase of eukaryotic evolution before the symbiosis of protomitochondria occurred. Furthermore, this suggests that, among eukaryotic kingdoms with mitochondria, Fungi is the closest relative of Animalia, and that a cellular slime mold, Dictyostelium discoideum, had not diverged from the line leading to Plantae-Fungi-Animalia before these three kingdoms separated. Offprint requests to: M. Hasegawa  相似文献   

8.
9.
During infection, the intestinal protozoan parasite Giardia lamblia undergoes continuous antigenic variation which is determined by diversification of the parasite's major surface antigen, named VSP (variant surface protein). One member from this protein family, VSP H7, is expressed by G. lamblia clone GS/M-83-H7. In the present study, we characterised a highly antigenic portion of VSP H7 which is positioned inside a 130 amino acid C-terminal region of the protein. This region overlaps with a cysteine-rich motif that is rather conserved within the VSP family. Detailed molecular dissection of the antigenic portion monitored a 12 amino acid peptidyl structure which constitutes a non-conformational epitope of VSP H7. In the murine host, this epitope is recognised relatively early (before day 10 p.i.) during infection and stimulates a strong intestinal immunoglobulin A response. At late infective stages (after day 10 p.i.) this immune reaction is progressively complemented by reactions against 'late' antigenic epitopes which are also located inside the 130 amino acid antigenic portion but in closer proximity to the C-terminal end of VSP H7 than the 12 amino acid epitope. Both the high antigenicity and the conserved character suggest that the 12 amino acid epitope is a key factor within the immunological interplay between G. lamblia and the experimental murine host.  相似文献   

10.
Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.  相似文献   

11.
Giardia lamblia is a flagellate protozoan that infects humans and other mammals and the most frequently isolated intestinal parasite worldwide. Giardia trophozoites undergo essential biological changes to survive outside the intestine of their host by differentiating into infective cysts. Cyst formation, or encystation, is considered one of the most primitive adaptive responses developed by eukaryotes early in evolution and crucial for the transmission of the parasite among susceptible hosts. During this process, proteins that will assemble into the extracellular cyst wall (CWP1 and CWP2) are transported to the cell surface within encystation-specific secretory vesicles (ESVs) by a developmentally regulated secretory pathway. Cyst wall proteins (CWPs) are maintained as a dense material inside the ESVs, but after exocytosis, they form the fibrillar matrix of the cyst wall. Little is known about the molecular mechanisms involved in granule biogenesis and discharge in Giardia, as well as the assembly of the extracellular wall. In this work, we provide evidences that a novel 54-kDa protein that exclusively localizes to the ESVs is induced during encystation similar to CWPs, proteolytically processed during granule maturation, and able to bind calcium in vitro. The gene encoding this molecule predicts a novel protein (called gGSP for G. lamblia Granule-specific Protein) without homology to any other protein reported in public databases. Nevertheless, it possesses characteristics of calcium-sequestering molecules of higher eukaryotes. Inhibition of gGSP expression abolishes cyst wall formation, suggesting that this secretory granule protein regulates Ca(2+)-dependent degranulation of ESVs during cyst wall formation.  相似文献   

12.
Alpha-1 giardin is an immunodominant protein in the intestinal protozoan parasite Giardia lamblia. The Triage((R)) parasite panel, used to detect copro-antigens in stool from giardiasis patients, reacts with an epitope between amino acids 160 and 200 in alpha-1 giardin. This region of the protein is also highly immunogenic during human infections. Alpha-1 giardin is related to annexins and like many other annexins it was shown to be plasma membrane associated. Immunoelectron and immunofluorescence microscopy revealed that some alpha-1 giardin are displayed on the surface of recently excysted cells. Recombinant alpha-1 giardin displayed a Ca(2+)-dependent binding to glycosaminoglycans (GAGs), in particular heparan sulphate, a common GAG in the intestinal tract. Recombinant alpha-1 giardin bound to thin sections of human small intestine, a binding which could be inhibited by adding increasing concentrations of sulphated sugars. A surface associated trypsin activated Giardia lectin (taglin) has been suggested to be important for G. lamblia attachment. In this study we show that a monoclonal antibody that inhibits taglin recognises alpha-1 and alpha-2 giardin. Thus, alpha-1 giardin is a highly immunoreactive GAG-binding protein, which may play a key role in the parasite-host interaction. Our results further show a conserved function of annexins from lower to higher eukaryotes.  相似文献   

13.
The protozoan parasite Giardia lamblia is the most common cause of waterborne disease outbreaks associated with drinking water in the United States. The conventional method used for the enumeration of Giardia cysts in water is based on immunofluorescence with monoclonal antibodies. It is tedious and time-consuming and has the major drawback to be non-specific for the only species infecting humans, G. lamblia. We have developed a real-time polymerase chain reaction (PCR) method using fluorescent TaqMan technology, which improved the specificity of G. lamblia cyst quantification compared to the immunofluorescence assay (IFA). However, this PCR was not totally specific for G. lamblia species and amplified Giardia ardeae target as well. This method showed a sensitivity of 0.45 cysts per reaction and an efficiency of 95% in purified suspensions. We have then applied this quantification method to raw wastewater, a medium containing numerous debris, particles and PCR inhibitors. The adaptation to these environmental samples was realized by a screening of three cyst purification methods and six DNA extraction protocols. Real-time quantification was accomplished by the simultaneous amplification of unknown samples and a tenfold serial dilution of purified G. lamblia cysts. For all samples, the concentrations observed with TaqMan PCR method were compared to the IFA values. Giardia spp. cysts were detected in all non-spiked raw wastewater samples with IFA procedure and the concentrations of Giardia spp. cysts used for the comparison between the two methods ranged between 3.3x10(2)/l and 4.3x10(3)/l. The highest TaqMan PCR/IFA ratios were observed when Percoll/sucrose flotation was combined with DNA extraction protocol optimized for cyst wall lysis, impurities adsorption on a resin, and double step protein digestion and column purification. The concentrations observed with this TaqMan PCR method ranged from 2.5x10(2) to 2.4x10(3) G. lamblia cysts/l and only one sample resulted in a no amplification curve. Thus, we developed a TaqMan PCR method increasing the rapidity and specificity of G. lamblia cyst quantification. The combination of Percoll/sucrose flotation and DNA extraction optimized protocol before TaqMan assay has provided a good indication of the G. lamblia contamination level in raw sewage samples.  相似文献   

14.
蓝氏贾第鞭毛虫(Giardia lamblia,又称Gi-ardiaintestinalis或Giardia duodenalis,以下简称贾第虫)是一种广为关注的源真核生物(Archezoa),在生物进化中处于原核生物和真核生物的过渡阶段。在医学上,贾第虫是一种重要的导致腹泻的病原体,其宿主广泛,包括人和大多数脊椎动物。研  相似文献   

15.
Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia. Therefore, we suggest that a common mechanism of pre-RNA processing may operate in the anucleolate eukaryote G. lamblia and in the other eukaryotes and that like the case of "lack of mitochondrion," "lack of nucleolus" may not be a primitive feature, but a secondarily evolutionary condition of the parasite.  相似文献   

16.
Encystation-specific cysteine protease (ESCP) was the first membrane-associated protein described to be part of the lysosome-like peripheral vacuoles in the intestinal parasite Giardia lamblia. ESCP is homologous to cathepsin C enzymes of higher eukaryotes, but is distinguished from other lysosomal cysteine proteases because it possesses a transmembrane domain and a short cytoplasmic tail. Tyrosine-based motifs within tails of membrane proteins are known to participate in endosomal/lysosomal protein sorting in higher eukaryotes. In this study, we show that a YRPI motif within the ESCP cytoplasmic tail is necessary and sufficient to mediate ESCP sorting to peripheral vacuoles in Giardia. Deletion and point mutation analysis demonstrated that the tyrosine residue is critical for ESCP sorting, whereas amino acids located at the Y+1 (Arg), Y+2 (Pro), and Y+3 (Ile) positions show minimal effect. Loss of the motif resulted in surface localization, whereas addition of the motif to a variant-specific surface protein resulted in lysosomal localization. Although Giardia trophozoites lack a morphologically discernible Golgi apparatus, our findings indicate that this parasite directs proteins to the lysosomes using a conserved sorting signal similar to that used by yeast and mammalian cells. Because Giardia is one of the earliest branching protist, these results demonstrate that sorting motifs for specific protein traffic developed very early during eukaryotic evolution.  相似文献   

17.
ABSTRACT. Complete nucleotide sequences have been established for two genes (gap1 and gap2) coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) homologs in the diplomonad Giardia lamblia. In addition, almost complete sequences of the GAPDH open reading frames were obtained from PCR products for two free-living diplomonad species, Trepomonas agilis and Hexamita inflata, and a parasite of Atlantic salmon, an as yet unnamed species with morphological affinities to Spironucleus. Giardia lamblia gap 1 and the genes from the three other diplomonad species show high similarity to each other and to other glycolytic GAPDH genes. All amino-acyl residues known to be highly conserved in this enzyme are also conserved in these sequences. Giardia lamblia gap2 gene is more divergent and its putative translation reveals the presence of a cysteine and serine-rich insertion resembling a metal binding finger. This motif has not yet been noted in other GAPDH molecules. All sequences contain an S-loop signature with characteristics close to those of eukaryotes. In phylogenetic reconstructions based on the derived amino acid sequences with neighborjoining, parsimony and maximum-likelihood methods the four typical GAPDH sequences of diplomonads cluster into a single clade. Within this clade, G. lamblia gap1 shares a common ancestor with the rest of the genes. The latter are more closely related to each other, indicating an early separation of the lineage leading to the genus Giardia from the lineage encompassing the morphologically less differentiated genera, Trepomonas, Hexamita and that of the unnamed species. This result is discordant with the orthogonal evolution of diplomonads suggested on the basis of comparative morphology. In neighbor-joining reconstructions G. lamblia gap2 occupies a variable position, due to its great divergence. In parsimony and maximum likelihood analysis however, it shares a most recent common ancestor with the typical G. lamblia gap1 gene, suggesting that it diverged after the separation of the Giardia lineage. The position of the diplomonad clade in broader phylogenetic reconstructions is firmly within the typical cytosolic glycolytic representatives of GAPDH of eukaryotes.  相似文献   

18.
A suite of 23 ultrastructural characters was used in a phylogenetic analysis of the protozoan order Diplomonadida. A single most parsimonious solution was found, with a length of 38 transformations and a consistency index of 0.84. The cladogram supports previous hypotheses of the relationships of the genera in the suborder Diplomonadina, as well as the inclusion of the genera Enteromonas and Trimitus in the order. Heterochrony is suggested in the change to binary axial symmetry, as hypermorphosis resulting from delayed cytokinesis in the ancestor. Hypotheses regarding a pivotal position for Giardia lamblia in the evolution of eukaryotes are inconsistent with the phylogeny proposed here.  相似文献   

19.
ABSTRACT. A suite of 23 ultrastructural characters was used in a phylogenetic analysis of the protozoan order Diplomonadida. A single most parsimonious solution was found, with a length of 38 transformations and a consistency index of 0.84. The cladogram supports previous hypotheses of the relationships of the genera in the suborder Diplomonadina, as well as the inclusion of the genera Enteromonas and Trimitus in the order. Heterochrony is suggested in the change to binary axial symmetry, as hypermorphosis resulting from delayed cytokinesis in the ancestor. Hypotheses regarding a pivotal position for Giardia lamblia in the evolution of eukaryotes are inconsistent with the phylogeny proposed here.  相似文献   

20.
The development of a genetic vector for protozoan parasites is a major hurdle yet to be crossed in the study of the molecular and cellular biology of these parasites. We have identified and isolated a double-stranded RNA virus (G. lamblia virus [GLV]) from certain strains of the intestinal parasitic protozoan Giardia lamblia (A. L. Wang and C. C. Wang, Mol. Biochem. Parasitol. 21:269-276, 1986), which is capable of infecting other virus-free strains of G. lamblia (R. L. Miller, A. L. Wang, and C. C. Wang, Exp. Parasitol. 66:118-123, 1988). Here we demonstrate that G. lamblia can be infected with GLV by electroporating uninfected cells with purified single-stranded RNA (E. S. Furfine, T. C. White, A. L. Wang, and C. C. Wang, Nucleic Acids Res. 17:7453-7467, 1989) representing a full-length copy of one strand of the GLV double-stranded RNA genome. To the best of our knowledge, this is the first demonstration in vivo that a single-stranded RNA is a competent replicative intermediate for this class of double-stranded RNA virus. In addition, this result represents the first long-term transfection of a protozoan by a single species of RNA and will hopefully expedite the development of GLV as a genetic transfecting vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号