首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored. Here, we collected wild house mice from three latitudinal transects across North and South America and investigated the relationship between variation in the gut microbiota and host body mass by combining field observations and common garden experiments. First, we found that mice in the Americas follow Bergmann's rule, with increasing body mass at higher latitudes. Second, we found that overall differences in the gut microbiota were associated with variation in body mass controlling for the effects of latitude. Then, we identified specific microbial measurements that show repeated associations with body mass in both wild‐caught and laboratory‐reared mice. Finally, we found that mice from colder environments tend to produce greater amounts of bacteria‐driven energy sources (i.e., short‐chain fatty acids) without an increase in food consumption. Our findings provide motivation for future faecal transplant experiments directly testing the intriguing possibility that the gut microbiota may contribute to Bergmann's rule, a fundamental pattern in ecology.  相似文献   

2.
House mice (Mus musculus) are human commensals and have served as a primary model in biomedical, ecological and evolutionary research. Although there is detailed knowledge of the biogeography of house mice in Europe, little is known of the history of house mice in China, despite the fact that China encompasses an enormous portion of their range. In the present study, 535 house mice caught from 29 localities in China were studied by sequencing the mitochondrial D‐loop and genotyping 10 nuclear microsatellite markers distributed on 10 chromosomes. Phylogenetic analyses revealed two evolutionary lineages corresponding to Mus musculus castaneus and Mus musculus musculus in the south and north, respectively, with the Yangtze River approximately representing the boundary. More detailed analyses combining published sequence data from mice sampled in neighbouring countries revealed the migration routes of the two subspecies into China: M. m. castaneus appeared to have migrated through a southern route (Yunnan and Guangxi), whereas M. m. musculus entered China from Kazakhstan through the north‐west border (Xinjiang). Bayesian analysis of mitochondrial sequences indicated rapid population expansions in both subspecies, approximately 4650–9300 and 7150–14 300 years ago for M. m. castaneus and M. m. musculus, respectively. Interestingly, the migration routes of Chinese house mice coincide with the colonization routes of modern humans into China, and the expansion times of house mice are consistent with the development of agriculture in southern and northern China, respectively. Finally, our study confirmed the existence of a hybrid zone between M. m. castaneus and M. m. musculus in China. Further study of this hybrid zone will provide a useful counterpart to the well‐studied hybrid zone between M. m. musculus and Mus musculus domesticus in central Europe.  相似文献   

3.
Interspecific hybridization between closely related mammalian species, including various species of the genus Mus, is commonly associated with abnormal growth of the placenta and hybrid foetuses, a phenomenon known as hybrid placental dysplasia (HPD). The role of HPD in speciation is anticipated but still poorly understood. Here, we studied placental and foetal growth in F1 crosses between four inbred mouse strains derived from two house mouse subspecies, Mus musculus musculus and Mus musculus domesticus. These subspecies are in the early stage of speciation and still hybridize in nature. In accordance with the maternal–foetal genomic conflict hypothesis, we found different parental influences on placental and foetal development, with placental weight most affected by the father's body weight and foetal weight by the mother's body weight. After removing the effects of parents’ body weight, we did not find any significant differences in foetal or placental weights between intra‐subspecific and inter‐subspecific F1 crosses. Nevertheless, we found that the variability in placental weight in inter‐subspecific crosses is linked to the X chromosome, similarly as for HPD in interspecific mouse crosses. Our results suggest that maternal–foetal genomic conflict occurs in the house mouse system, but has not yet diverged sufficiently to cause abnormalities in placental and foetal growth in inter‐subspecific crosses. HPD is thus unlikely to contribute to speciation in the house mouse system. However, we cannot rule out that it might have contributed to other speciation events in the genus Mus, where differences in the levels of polyandry exist between the species.  相似文献   

4.
Host‐parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. ‘Intimately’ associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free‐living stage have been proposed as ‘intimacy’ factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt‐COX1, ITS1‐5.8S‐ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt‐COX1 and three clear ITS1‐5.8S‐ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an ‘intimate’ parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.  相似文献   

5.
The effects of gastrointestinal tract microbiota (GTM) on host physiology and health have been the subject of considerable interest in recent years. While a variety of captive bred species have been used in experiments, the extent to which GTM of captive and/or inbred individuals resembles natural composition and variation in wild populations is poorly understood. Using 454 pyrosequencing, we performed 16S rDNA GTM barcoding for 30 wild house mice (Mus musculus) and wild‐derived inbred strain mice belonging to two subspecies (M. m. musculus and M. m. domesticus). Sequenced individuals were selected according to a 2 × 2 experimental design: wild (14) vs. inbred origin (16) and M. m. musculus (15) vs. M. m. domesticus (15). We compared alpha diversity (i.e. number of operational taxonomic units – OTUs), beta diversity (i.e. interindividual variability) and microbiota composition across the four groups. We found no difference between M. m. musculus and M. m. domesticus subspecies, suggesting low effect of genetic differentiation between these two subspecies on GTM structure. Both inbred and wild populations showed the same level of microbial alpha and beta diversity; however, we found strong differentiation in microbiota composition between wild and inbred populations. Relative abundance of ~ 16% of OTUs differed significantly between wild and inbred individuals. As laboratory mice represent the most abundant model for studying the effects of gut microbiota on host metabolism, immunity and neurology, we suggest that the distinctness of laboratory‐kept mouse microbiota, which differs from wild mouse microbiota, needs to be considered in future biomedical research.  相似文献   

6.
Identifying a common set of genes that mediate host–microbial interactions across populations and species of mammals has broad relevance for human health and animal biology. However, the genetic basis of the gut microbial composition in natural populations remains largely unknown outside of humans. Here, we used wild house mouse populations as a model system to ask three major questions: (a) Does host genetic relatedness explain interindividual variation in gut microbial composition? (b) Do population differences in the microbiota persist in a common environment? (c) What are the host genes associated with microbial richness and the relative abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut microbial composition as characterized by 16S amplicon sequencing. Using a common garden approach, we then identified differences in microbial composition between populations that persisted in a shared laboratory environment. Finally, we used exome sequencing to associate host genetic variants with microbial diversity and relative abundance of microbial taxa in wild mice. We identified 20 genes that were associated with microbial diversity or abundance including a macrophage‐derived cytokine (IL12a) that contained three nonsynonymous mutations. Surprisingly, we found a significant overrepresentation of candidate genes that were previously associated with microbial measurements in humans. The homologous genes that overlapped between wild mice and humans included genes that have been associated with traits related to host immunity and obesity in humans. Gene–bacteria associations identified in both humans and wild mice suggest some commonality to the host genetic determinants of gut microbial composition across mammals.  相似文献   

7.
High altitude is an important driving force in animal evolution. However, the effect of altitude on gut microbial communities in reptiles has not been examined in detail. Here, we investigated the intestinal microbiota of three populations of the lizard Phrynocephalus vlangalii living at different altitudes using 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla. Bacteroides, Odoribacter, and Parabacteroides were the most abundant genera. Significant differences in the intestinal microbiota composition were found among the three populations from different altitudes. The proportions of Verrucomicrobia and Akkermansia decreased, whereas Bacteroides increased significantly with altitude. Greater abundance of Bacteroides at higher altitude led to the fractional increase in the phylum Bacteroides relative to other phyla. Hypoxia may be the main factor that caused intestinal microbiota variation in P. vlangalii along the altitude gradient. Overall, our study suggested that the community composition and structure of intestinal microbiota of the lizard P. vlangalii varied along altitudes, and such differences likely play a certain role in highland adaptation. Our findings warrant a further study that would determine whether ambient and body temperatures play a key role in the modulation of intestinal microbiota in reptiles.  相似文献   

8.
Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c‐Fos expression pattern in the four nuclei of the preoptic‐bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter‐male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic‐BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.  相似文献   

9.
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N‐oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.  相似文献   

10.
11.
Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild‐derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y‐linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.  相似文献   

12.
13.
Recently, the improvement of methods for shape analysis has revolutionized the field of morphometrics. While three‐dimensional (3D) imaging technology is increasingly available, many studies of 3D structures still use two‐dimensional (2D) data, even when this may result in the loss of important information. This is particularly conspicuous in the study of small mammals, as devices precise enough for 3D digitization of small objects are the most expensive. Thus, the development of low‐cost methods aimed to recover 3D shape from small mammals would be of wide interest. Photogrammetry allows for obtaining 3D data with a lower cost than other 3D techniques, but it has not been previously applied to the study of small mammals. Accordingly, here we test the suitability of photogrammetric techniques to obtain 3D landmarks on mouse skulls as a model for small mammals. Shape and size of 3D models obtained with photogrammetric techniques were consistent among replicates, even when different sets of photographs were used. The linear measurements obtained from 3D models produced here were highly correlated with measurements obtained with callipers on actual crania, and differences among both sets of measures were smaller than those among individuals in most of the tested measures. These results show for the first time that photogrammetry is a precise technique for 3D shape analysis of small mammals. Photogrammetry also proved to be accurate for obtaining linear measurements between 3D landmarks; however, further studies are needed to demonstrate that this technique is also accurate to recreate 3D shapes.  相似文献   

14.
Dispersal in house mice   总被引:5,自引:0,他引:5  
This review evaluates direct (live-trapping) and indirect (genetic) methods to study dispersal in wild house mice ( Mus musculus ) and summarizes field and experimental data to examine the causes and consequences of dispersal. Commensal house mice (associated with human habitations, farms, food stores and other anthropogenic habitats) typically show lower rates of dispersal than feral house mice (living in crops, natural and semi-natural habitats). However, early claims of long-term fine-scale genetic structure in commensal house mice (due to low rates of dispersal) are not supported by recent data. Dispersal becomes obligatory when habitat conditions deteriorate, but most dispersal occurs below the local environmental carrying capacity and is due to social interactions with conspecifics. Excursions are relatively frequent and probably allow mice to assess the quality of habitats before dispersing. Young males have the greatest tendency to disperse, apparently prompted mainly by aggressive interactions with dominant males. If they do disperse, females integrate into new groups more easily than do males. Dispersing house mice risk loss of condition or death, but may gain reproductive opportunities on arrival in a new location. House mice can be transported passively as stowaways with humans; this contributes to population persistence and genetic structure at regional scales and has allowed house mice to spread world-wide.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 565–583.  相似文献   

15.
The identification of the genes involved in morphological variation in nature is still a major challenge. Here, we explore a new approach: we combine 178 samples from a natural hybrid zone between two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus), and high coverage of the genome (~ 145K SNPs) to identify loci underlying craniofacial shape variation. Due to the long history of recombination in the hybrid zone, high mapping resolution is anticipated. The combination of genomes from subspecies allows the mapping of both, variation within subspecies and inter‐subspecific differences, thereby increasing the overall amount of causal genetic variation that can be detected. Skull and mandible shape were measured using 3D landmarks and geometric morphometrics. Using principal component axes as phenotypes, and a linear mixed model accounting for genetic relatedness in the mapping populations, we identified nine genomic regions associated with skull shape and 10 with mandible shape. High mapping resolution (median size of significant regions = 148 kb) enabled identification of single or few candidate genes in most cases. Some of the genes act as regulators or modifiers of signalling pathways relevant for morphological development and bone formation, including several with known craniofacial phenotypes in mice and humans. The significant associations combined explain 13% and 7% of the skull and mandible shape variation, respectively. In addition, a positive correlation was found between chromosomal length and proportion of variation explained. Our results suggest a complex genetic architecture for shape traits and support a polygenic model.  相似文献   

16.
The birth canal provides mammals with a primary maternal inoculum, which develops into distinctive body site-specific microbial communities post-natally. We characterized the distal gut microbiota from birth to weaning in mice. One-day-old mice had colonic microbiota that resembled maternal vaginal communities, but at days 3 and 9 of age there was a substantial loss of intestinal bacterial diversity and dominance of Lactobacillus. By weaning (21 days), diverse intestinal bacteria had established, including strict anaerobes. Our results are consistent with vertical transmission of maternal microbiota and demonstrate a nonlinear ecological succession involving an early drop in bacterial diversity and shift in dominance from Streptococcus to Lactobacillus, followed by an increase in diversity of anaerobes, after the introduction of solid food. Mammalian newborns are born highly susceptible to colonization, and lactation may control microbiome assembly during early development.  相似文献   

17.
The colonization history of Madeiran house mice was investigated by analysing the complete mitochondrial (mt) D-loop sequences of 156 mice from the island of Madeira and mainland Portugal, extending on previous studies. The numbers of mtDNA haplotypes from Madeira and mainland Portugal were substantially increased (17 and 14 new haplotypes respectively), and phylogenetic analysis confirmed the previously reported link between the Madeiran archipelago and northern Europe. Sequence analysis revealed the presence of four mtDNA lineages in mainland Portugal, of which one was particularly common and widespread (termed the 'Portugal Main Clade'). There was no support for population bottlenecks during the formation of the six Robertsonian chromosome races on the island of Madeira, and D-loop sequence variation was not found to be structured according to karyotype. The colonization time of the Madeiran archipelago by Mus musculus domesticus was approached using two molecular dating methods (mismatch distribution and Bayesian skyline plot). Time estimates based on D-loop sequence variation at mainland sites (including previously published data from France and Turkey) were evaluated in the context of the zooarchaeological record of M. m. domesticus. A range of values for mutation rate (μ) and number of mouse generations per year was considered in these analyses because of the uncertainty surrounding these two parameters. The colonization of Portugal and Madeira by house mice is discussed in the context of the best-supported parameter values. In keeping with recent studies, our results suggest that mutation rate estimates based on interspecific divergence lead to gross overestimates concerning the timing of recent within-species events.  相似文献   

18.
Glacial phases during the Pleistocene caused remarkable changes in species range distributions, with inevitable genetic consequences. Specifically, during interglacial phases, when the ice melted and new habitats became suitable again, species could recolonize regions that were previously covered by ice, such as high latitudes and elevations. Based on theoretical models and empirical data, a decrease in genetic variation is predicted along recolonization routes as a result of the consecutive founder effects that characterize the recolonization process. In the present study, we assessed the relative importance of historical and contemporary processes in shaping genetic diversity and differentiation of bank vole (Myodes glareolus) populations at different elevations in the Swiss Alps. By contrast to expectations, we found that genetic variation increased with elevation. Estimates of recent migration rates and a contrasting pattern of genetic differentiation observed at the mitochondrial cytochrome b gene and nuclear microsatellites support the hypothesis that higher genetic diversity at high elevation results from contemporary gene flow. Although historical recolonization processes can have marked effects on the genetic structure of populations, the present study provides an example where contemporary processes along an environmental gradient can reverse predicted patterns of genetic variation.  相似文献   

19.
消化道微生物区系与肥胖关系的研究进展   总被引:1,自引:0,他引:1  
罗玉衡  朱伟云 《微生物学报》2007,47(6):1115-1118
肥胖以及与肥胖相关的一些疾病威胁着发达国家和发展中国家,这些疾病包括Ⅱ型糖尿病、高血压、心血管疾病、非酒精型脂肪肝。最新研究表明消化道微生物区系(microbiota,指一个特定区域中所有活的微生物群落的统称。)可能与宿主肥胖相关。目前此类研究尚处于起步阶段,作者总结了以往研究结果,对消化道微生物区系的组成和作用、与宿主能量代谢相关的消化道微生物种类和作用、消化道微生物区系影响宿主能量储存的途径作了较为详细的介绍。并探讨了目前研究中存在的问题,总结了本实验室已有研究成果,以及今后可能的研究方向。  相似文献   

20.
肠道菌群是一个与人体共生的复杂微生物区系,近年来被越来越多的研究者所关注。研究发现,肠道菌群不仅在维持人体正常生理功能中起到重要作用,在肿瘤发生、发展、诊断及治疗中也有不可忽视的作用。本文在对肠道菌群与肿瘤关系进行概述的基础上,重点介绍了肠道菌群促进肿瘤发生、发展的主要机制,以及肠道菌群对抗肿瘤免疫治疗尤其是免疫检查点抑制疗法的影响。此外,文中还总结了目前可行的调节肠道菌群以提高肿瘤治疗疗效的方法,并提出了其中可能存在的困难和挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号