首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

2.
The aim of this study was to evaluate probiotic properties of antimicrobial Lactobacillus plantarum VJC38 in vitro. L. plantarum VJC38 was isolated from the crop of broiler chicken and characterized using dnaK gene sequence. The inhibitory activities of L. plantarum VJC38 against bacterial and fungal pathogens were evaluated. Antifungal compounds secreted by the strain VJC38 were identified using Gas Chromatography and Mass Spectrometry (GC-MS). The strain was evaluated for its tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with pathogenic Escherichia coli, cell surface hydrophobicity, cholesterol lowering activity, β-galactosidase production, adhesion ability to Caco-2 cells, mucin degradation, hemolytic activity and biogenic amine production. Phylogenetic analysis of dnaK gene of bacterial strain VJC38 showed 99% sequence similarity to Lactobacillus plantarum var. plantarum. It showed effective inhibition against food spoiling and pathogenic organisms like Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, Penicillium expansum and Eurotium species. The antifungal compound phenol- 2,4-bis(1,1-dimethylethyl) (PD) was identified in the culture filtrate of L. plantarum VJC38 and reported to have inhibition against Aspergillus species. L. plantarum VJC38 exhibited tolerance to low pH, resistance to bile salts, bile salt hydrolase activity, auto-aggregation (87.5%), co-aggregation with Escherichia coli (55.7%), cholesterol lowering activity (64%), β-galactosidase production (1206 MU), adherence to Caco-2 cells (11%), negative for mucin degradation, hemolytic activity and biogenic amine production. L. plantarum VJC38 could be a good candidate for further investigation in vivo to elucidate its health benefits and to evaluate its technological properties as a bio-protective strain.  相似文献   

3.
In this study, seven bacteriocinogenic and non-bacteriocinogenic LAB strains previously isolated from the intestines of Nile tilapia and common carp and that showed potent antibacterial activity against host-derived and non-host-derived fish pathogens were assayed for their probiotic and safety properties so as to select promising candidates for in vivo application as probiotic in aquaculture. All the strains were investigated for acid and bile tolerances, transit tolerance in simulated gastrointestinal conditions, for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for bile salt hydrolase activity. Moreover, haemolytic, gelatinase and biogenic amine-producing abilities were investigated for safety assessment. The strains were found to be tolerant at low pH (two strains at pH 2.0 and all the strains at pH 3.0). All of them could also survive in the presence of bile salts (0.3% oxgall) and in simulated gastric and intestinal juices conditions. Besides, three of them were found to harbour the gtf gene involved in pH and bile salt survival. The strains also showed remarkable cell surface characteristics, and 57.14% exhibited the ability to deconjugate bile salts. When assayed for their safety properties, the strains prove to be free from haemolytic activity, gelatinase activity and they could neither produce biogenic amines nor harbour the hdc gene. They did not also show antibiotic resistance, thus confirming to be safe for application as probiotics. Among them, Lactobacillus brevis 1BT and Lactobacillus plantarum 1KMT exhibited the best probiotic potentials, making them the most promising candidates.  相似文献   

4.
The present study aims to investigate the probiotic properties of novel strains of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China and to explore their antibacterial activity against enteropathogenic bacteria. Of the 321 isolates, 86 exhibited survival in low pH, resistance to pancreatin, and tolerance to bile salts; of these, 12 inhibited the growth of more than seven enteropathogenic bacteria and exhibited antibiofilm activities against Staphylococcus aureus CMCC26003 and/or Escherichia coli CVCC230. Based on 16S ribosomal RNA sequence analysis, the 12 isolates were assigned to Lactobacillus plantarum (7), Lactobacillus helveticus (3), Pediococcus acidilactici (1), and Enterococcus faecium (1) species. In addition, 5 of the 12 strains were susceptible to most of the tested antibiotics. Furthermore, four strains with sensitivity to antibiotics showed significantly high levels of hydrophobicity similar to or better than the reference strain Lactobacillus rhamnosus GG. Moreover, three strains were confirmed safe through non-hemolytic activities and bacterial translocation. Overall, the selected Lact. plantarum 27053 and 27172 and Lact. helveticus 27058 strains can be considered potential probiotic strains and candidates for further application in functional food and prevention or treatment of gastrointestinal diseases.  相似文献   

5.
The present study shows that, from 300 Lactobacillus strains isolated from the oral cavity and large intestine of 600 healthy people, only 9 had high antagonistic activity against pathogens and opportunistic pathogens. All antagonistic strains of lactobacilli have been identified by 16S rRNA sequencing and assigned to four species: Lactobacillus fermentum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei. In addition, these lactobacilli appeared to be nonpathogenic and had some probiotic potential: the strains produced lactic acid and bacteriocins, showed high sensitivity to broad-spectrum antibiotics, and were capable of forming biofilms in vitro. With the help of PCR and specific primers, the presence of genes for prebacteriocins in L. plantarum (plnEF, plnJ, plnN) and L. rhamnosus (LGG_02380 and LGG_02400) has been revealed. It was found that intestinal strains of lactobacilli were resistant to hydrochloric acid and bile. Lactobacilli isolated from the oral cavity were characterized by a high degree of adhesion, whereas intestinal strains were characterized by average adhesion. Both types of lactobacilli had medium to high rates of auto-aggregation and hydrophobicity and could coaggregate with pathogens and opportunistic pathogens. Additionally, the ability of the lactobacilli strains to produce gasotransmitters, CH4, CO2, C2H6, CO, and NH3, has been revealed.  相似文献   

6.
Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami “shpek” and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.  相似文献   

7.
The aim of this study was to evaluate the probiotic potential of lactic acid bacteria (LAB) strains isolated from Horreh. Some probiotic properties, e.g., resistance to acid, bile tolerance, antibacterial activity, and antibiotic susceptibility, were investigated. A total of 140 Gram-positive and catalase-negative isolates from Horreh were subjected to identification and grouping by cultural methods and the 16S rRNA sequencing. The new isolates were identified to be Lactobacillus (fermentum, plantarum, and brevis) Weissella cibaria, Enterococcus (faecium and faecalis), Leuconostoc (citreum and mesenteroides subsp. mesenteroides) and Pediococcus pentosaceus. Probiotic potential study of LAB isolates showed that Lb. plantarum and Leu. mesenteroides subsp. mesenteroides isolates were able to grow at pH 2.5 and 3.5. Lactobacillus plantarum (isolate A44) showed the highest cell hydrophobicity (84.5%). According to antibacterial activity tests, Listeria innocua and Staphylococcus aureus were the most sensitive indicators against the selected LAB strains, while Escherichia coli and Bacillus cereus were the most resistant. In addition, all the isolated LAB species were resistant to vancomycin. The results of the present study suggested that the Lactobacillus fermentum and plantarum isolated from Horreh, characterized in this study, have potential use for industrial purposes as probiotics.  相似文献   

8.
Microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for their aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate antimicrobial activity against various pathogens, bile salt tolerance, and acid tolerance of 65 presumptive Lactobacillus spp. isolated from shellfish samples. Four strains (HL1, HL12, HL20, and JL28) were selected after qualitatively identifying high levels of antimicrobial activity against bacteria including Staphylococcus aureus, Salmonella typhimurium, Salmonella enteritidis, Escherichia coli O157:H7, Vibrio ichthyoenteri, Edwardsiella tarda, Streptococcus iniae, and V. parahaemolyticus. The sequence analysis of their 16S rRNA genes revealed that the four strains belong to the Lactobacillus plantarum species. In addition, their survivability was tested in bile salt and acidic conditions to show their potential use as probiotics in the gastrointestinal tract.  相似文献   

9.
Eleven Lactobacillus plantarum from Slovak ovine and caprine lump and stored cheeses, and from four commercial probiotic and yogurt cultures (Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus acidophilus) identified using a Maldi-TOF MS analysis were screened in vitro for selected aspects correlated with safety (antibiotic susceptibility patterns, biochemical and haemolytic activity, presence of genes responsible for biogenic amines production), functional traits (including acid, bile tolerance and antimicrobial activity), ecological roles (ability to produce biofilms), and technological applications (acidification and milk coagulation capacity) for assurance of their quality and diversity. The antibiotic susceptibility showed two L. plantarum strains, 19l5 and 18l4, with the presence of the non-wild-type ECOFFs (epidemiological cut-off) for clindamycin and/or gentamicin. All these strains expressed a high acid tolerance at pH 2.5 after a 4 h exposure (bacteria viability varied between 60% and 91%), and bile resistance at 0.3% oxgall ranged from 60% to 99% with no haemolytic activity. Three wild L. plantarum strains, 17l1, 16l4, 18l2, had no harmful metabolic activities, and formed strong biofilms that were measured by a crystal violet assay. Simultaneously, the acid cell-free culture supernatant (ACFCS) from L. plantarum 18l2 had a marked inhibitory effect on the viability of the pathogens as evaluated by flow-cytometry, and also exhibited fast acidification and milk coagulation. As a result, we conclude that L. plantarum 18l2 can be included as part of the created lactobacilli collection that is useful as a starter, or starter adjunct, in the dairy industry, due to its desirable safety and probiotic characteristics, together with rapid acidification capacity compared with other investigated strains from commercially accessible products.  相似文献   

10.
The present study focused on identification and genotypic characterization of Lactic acid bacteria (LAB) in the intestine of freshwater fish. 76 strains of LAB were isolated and identified by 16S rRNA gene sequences and hsp60 gene sequences as different strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus salivarius, Pediococcus pentosaceus, Pediococcus acidilactici, Weissella paramesenteroides, Weissella cibaria, Enterococcus faecium, and Enterococcus durans. The hsp60 gene showed a higher level of sequence variation among the isolates examined, with lower interspecies sequence similarity providing more resolutions at the species level than the 16S rRNA gene. Phylogenetic tree derived from hsp60 gene sequences with higher bootstrap values at the nodal branches was more consistent as compared to phylogenetic tree constructed from 16S rRNA gene sequences. Closely related species L. plantarum and L. pentosus as well as species L. delbrueckii subsp. bulgaricus and L. fermentum were segregated in different cluster in hsp60 phylogenetic tree whereas such a distribution was not apparent in 16S rRNA phylogenetic tree. In silico restriction analysis revealed a high level of polymorphism within hsp60 gene sequences. Restriction pattern with enzymes AgsI and MseI in hsp60 gene sequences allowed differentiation of all the species including closely related species L. plantarum and L. pentosus, E. faecium and E. durans. In general, hsp60 gene with higher evolutionary divergence proved to be a better phylogenetic marker for the group LAB.  相似文献   

11.
Screening and molecular identification of probiotic lactic acid bacteria (LAB) in effluents generated during the production of ogi, a fermented cereal (maize, millet, and sorghum) were done. LAB were isolated from effluents generated during the first and second fermentation stages in ogi production. Bacterial strains isolated were identified microscopically and phenotypically using standard methods. Probiotic potential properties of the isolated LAB were investigated in terms of their resistance to pH 1.5 and 0.3% bile salt concentration for 4 h. The potential LAB isolates ability to inhibit the growth of pathogenic organisms (Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium) was evaluated in vitro. The pH and LAB count in the effluents ranged from 3.31 to 4.49 and 3.67 to 4.72 log cfu/ml, respectively. A total of 88 LAB isolates were obtained from the effluents and only 10 LAB isolates remained viable at pH 1.5 and 0.3% bile salt. The zones of inhibition of the LAB isolates with probiotic potential ranged from 7.00 to 24.70 mm against test organsisms. Probiotic potential LAB isolates were molecularly identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Enterococcus faecium, Pediococcus acidilactici, Pediococcus pentosaceus, Enterococcus faecalis, and Lactobacillus brevis. Survival and proliferation of LAB isolates at low pH, 0.3% bile salt condition, and their inhibition against some test pathogens showed that these LAB isolates could be a potential probiotics for research and commercial purposes.  相似文献   

12.
Kefir is a natural fermentation agent composed of various microorganisms. To address the mechanism of kefir grain formation, we investigated the microbial role in forming kefir biofilms. The results showed that a biofilm could be formed in kefir-fermented milk and the biofilm forming ability reached the maximum at 13 days. The strains Kluyveromyces marxianus, Lactococcus lactis, Leuconostoc mesenteroides, Lactobacillus kefiri, Lactobacillus sunkii and Acetobacter orientalis were isolated from kefir biofilms by the streak-plate method. These microorganisms were analysed with respect to biofilm forming properties, including their surface characterisation (hydrophobicity and zeta potentials) and the microbial aggregation. The results indicated that Klu. marxianus possessed the strongest biofilm forming properties with the strongest hydrophobicity, lowest zeta potential and greatest auto-aggregation ability. When Klu. marxianus and Ac. orientalis were co-cultured with kefir LAB strains respectively, it was found that mixing Klu. marxianus with Lb. sunkii produced the highest co-aggregation ability. These results elucidated the mechanism of kefir biofilm formation and the microorganisms involved.  相似文献   

13.
Corynebacterium vitaeruminis MRU4 was isolated from the cow rumen and was differentiated from other isolates by rep-PCR and RAPD and identified by 16S rRNA sequencing. This strain presented higher survival rates for low pH and bile salts treatments, and it was able to survive and multiply in simulated gastric and intestinal environments. C. vitaeruminis MRU4 had a 53.2% auto-aggregation rate, 42.4% co-aggregation rate with Listeria monocytogenes Scott A, 41.6% co-aggregation rate with Enterococcus faecalis ATCC 19443, 10.0% co-aggregation rate with Lactobacillus sakei ATCC 15521, and 98.2% cell surface hydrophobicity rate. PCR analysis showed the presence of EFTu and map genes. The strain possessed positive results for deconjugation of bile salts (taurocholic acid, taurodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid) and positive results for β-galactosidase activity and lactose assimilation activity (glucose of 8.15 ± 0.01 CFU/ml and lactose of 9.24 ± 0.02 CFU/ml). No virulence was observed by phenotypical tests. C. vitaeruminis MRU4 was resistant to oxacillin, gentamicin, erythromycin, clindamycin, sulfa/trimethoprim, and rifampicin by the disc diffusion method and showed resistance just for vancomycin by the Etest® strips test. The strain was negative for 50 tested virulence and resistance genes based on performed PCR. Based on our knowledge, this is the first report regarding the beneficial potential of one C. vitaeruminis strain.  相似文献   

14.
The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.  相似文献   

15.
Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04?×?106 CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86?×?104 CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~?50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.  相似文献   

16.
The expression of L-lactate dehydrogenase genes ldh1 (Bos taurus), ldhA (Homo sapiens), ldhA (Rhizopus oryzae), ldh1 (Lactobacillus plantarum), and ldh1 (Lactobacillus pentosus) in the cells of yeast Schizosaccharomyces pombe VKPM U-3106 has been investigated. The catalytic characteristics of the enzymes encoded by these genes have been compared, and the intensity of lactic acid synthesis by the recombinant strains obtained has been evaluated. The enzymatic activity of L-lactate dehydrogenases from L. plantarum and L. pentosus was the highest (approximately 2 to 2.5 times higher than that of the mammalian enzymes), and these enzymes therefore appear to have the highest potential for the development of lactic-acid producing strains of yeast S. pombe.  相似文献   

17.
The probiotic characteristics of Lactobacillus curvatus DN317, a strain isolated from chicken ceca, were evaluated. This strain was selected for study from the isolated Lactobacillus strains because it has specific anti-microbial activity against Campylobacter jejuni ATCC 33560, Camp. jejuni NCTC 11168, Listeria monocytogenes ATCC 7644, and Bacillus subtilis ATCC 8633. Lact. curvatus DN317 showed an auto-aggregation percentage of 72% and presented the highest co-aggregation with Lact. monocytogenes ATCC 7644 (68%) compared to B. subtilis ATCC 8633 (45%), Camp. jejuni ATCC 33560 (36%), and Camp. jejuni NCTC 11168 (35%). The data revealed that Lact. curvatus DN317 could survive at 0.25% bile, maintain viability at pH 2.5 for 30 min, produce biosurfactants, and adhere to Caco-2 cells. Quantification of IL-6, IL-8, IL-10, and β-defensin 2 levels shows that Lact. curvatus DN317 induces an increase in IL-8 and β-defensin 2 secretion, while the levels of IL-6 and IL-10 do not change. Lact. curvatus DN317 showed high levels of esterase and cysteine arylamidase activities (5); moderate levels of esterase lipase, β-galactosidase, and α-galactosidase activities (4, 3); and weak levels of leucine arylamidase, valine arylamidase, and acid phosphatase activity (1). Various activities were obtained of α-chymotrypsin, β-glucuronidase, β-glucosidase, and N-acetyl-β-glucosaminidase, which have been associated with intestinal diseases. Lact. curvatus DN317 lowered the cholesterol level in MRS with and without bile. Antibiotic susceptibility tests indicated that DN317 was sensitive to ampicillin, gentamicin, kanamycin, streptomycin, tetracycline, clindamycin, erythromycin, and vancomycin but was resistant to chloramphenicol and ciprofloxacin. These results suggest that Lact. curvatus DN317 could potentially function as a probiotic.  相似文献   

18.
Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains’ survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1–4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.  相似文献   

19.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

20.
A group of 67 Lactobacillus spp. strains containing Lactobacillus casei/paracasei, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus rhamnosus and Lactobacillus salivarius species isolated from early childhood caries and identified to the species level in a previous study (?vec et al., Folia Microbiol 54:53–58, 2009) was characterized by automated ribotyping performed by the RiboPrinter® microbial characterization system and by randomly amplified polymorphic DNA fingerprinting (RAPD-PCR) with M13 primer to evaluate these techniques for characterization of lactobacilli associated with dental caries. Ribotyping revealed 55 riboprints among the analysed group. The automatic identification process performed by the RiboPrinter system identified 18 strains to the species level, however cluster analysis divided obtained ribotype patterns into individual clusters mostly corresponding to the species assignment of particular strains. RAPD-PCR fingerprints revealed by the individual Lactobacillus spp. showed higher variability than the ribotype patterns and the fingerprint profiles generated by the analysed species were distributed among one to four clusters. In conclusion, ribotyping is shown to be more convenient for the identification purposes while RAPD-PCR fingerprinting results indicate this method is a better tool for typing of Lactobacillus spp. strains occurring in dental caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号