首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex.  相似文献   

2.
Genome duplications may have played a role in the early stages of vertebrate evolution, near the time of divergence of the lamprey lineage. Additional genome duplication, specifically in ray-finned fish, may have occurred before the divergence of the teleosts. The common carp (Cyprinus carpio) has been considered tetraploid because of its chromosome number (2n = 100) and its high DNA content. We studied variation using 59 microsatellite primer pairs to better understand the ploidy level of the common carp. Based on the number of PCR amplicons per individual, about 60% of these primer pairs are estimated to amplify duplicates. Segregation patterns in families suggested a partially duplicated genome structure and disomic inheritance. This could suggest that the common carp is tetraploid and that polyploidy occurred by hybridization (allotetraploidy). From sequences of microsatellite flanking regions, we estimated the difference per base between pairs of alleles and between pairs of paralogs. The distribution of differences between paralogs had two distinct modes suggesting one whole-genome duplication and a more recent wave of segmental duplications. The genome duplication was estimated to have occurred about 12 MYA, with the segmental duplications occurring between 2.3 and 6.8 MYA. At 12 MYA, this would be one of the most recent genome duplications among vertebrates. Phylogenetic analysis of several cyprinid species suggests an evolutionary model for this tetraploidization, with a role for polyploidization in speciation and diversification.  相似文献   

3.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

4.
The genomes of many higher organisms, including plants and bony fish, frequently undergo polyploidization, and it has long been hypothesized that these, and other, large-scale genomic duplications have played an important role in the major evolutionary transitions of our past. Here we build upon an early work to show that the human genomic region 8p11.21-8p21.3 has three paralogous regions on chromosomes 4, 5, and 10 that were produced by two rounds of duplications after the protostomian-deuterostomian split and before the actinopterygian-sarcopterygian split. We base our analysis on the phylogenetic reconstruction of the evolutionary history of 38 gene families located in these regions. Using an alignment centered on protein domains, three different phylogenetic methods, and divergence time estimation, this analysis gives more support in favor of two ancient polyploidization events in the vertebrate ancestral genome.  相似文献   

5.
The study of Hox gene clusters continues to serve as a paradigm for those interested in vertebrate genome evolution. Recent exciting discoveries about Hox gene composition in fishes challenges conventional views about vertebrate Hox gene evolution, and has initiated lively debates concerning the evolutionary events making the divergence of the major vertebrate lineages. Comparative analyses indicate that Hox cluster duplications occurred in early vertebrate evolution, and again within the order Cypriniformes of teleost fish. Loss of Hox genes was more widespread than duplication during fish evolution.  相似文献   

6.
鱼类特异的基因组复制   总被引:2,自引:0,他引:2  
周莉  汪洋  桂建芳 《动物学研究》2006,27(5):525-532
辐鳍鱼类是脊椎动物中种类最多、分布最广的类群,其基因组大小不等。过去的观点认为,在脊椎动物进化历程中曾发生了两次基因组复制。近期的系统基因组学研究资料进一步提出,在大约350百万年,辐鳍鱼还发生了第三次基因组复制,即鱼类特异的基因组复制(fish-specificgenomeduplication,FSGD),且发生的时间正处在“物种极度丰富”的硬骨鱼谱系(真骨总目)和“物种贫乏”的谱系(辐鳍鱼纲基部的类群)出现分歧的时间点,表明FSGD与硬骨鱼物种和生物多样性的增加有关。进一步开展鱼类比较基因组学和功能基因组学研究将进一步验证FSGD这一假说。  相似文献   

7.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   

8.
The karyology of species of sturgeon from the Russian Far East demonstrates that the karyotype of the Sakhalin sturgeon (Acipenser mikadoi) includes 262 ± 4 chromosomes with 80 biarmed chromosomes and the number of chromosome arms (NF) 342 ± 4, the karyotype of the Amur sturgeon (A. schrenckii) includes 266 ± 4 chromosomes with 92 biarmed chromosomes and NF 358 ± 4, and the karyotype of the kaluga (A. dauricus) consists of 268 ± 4 chromosomes with 100 biarmed chromosomes and NF 368 ± 4. These results prove that all western Pacific sturgeon species are from a tetraploid origin, based on a recent ploidy scale. This suggests that at least three polyploidization events have occurred during the evolution of Acipenseridae. However, if polyploid species originated by hybridization between diploid species, there may have been more polyploidization events in this group of fishes.  相似文献   

9.
10.
Gene duplication events are important sources of novel gene functions. However, more often than not, a duplicate gene may lose its function and become a pseudogene. What is the relative frequency of these two scenarios: functional divergence versus gene loss? Given that most non-neutral mutations are deleterious, gene loss should be far more frequent than divergence. However, a recent empirical study suggests that about 50% of all gene duplications will lead to functional divergence. The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution. Reasons for this unexpectedly high frequency of functional divergence are discussed.  相似文献   

11.
12.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

13.
Polyploidy events (polyploidization) followed by progressive loss of redundant genome components are a major feature of plant evolution, with new evidence suggesting that all flowering plants possess ancestral genome duplications. Furthermore, many of our most important crop plants have undergone additional, relatively recent, genome duplication events. Recent advances in DNA sequencing have made vast amounts of new genomic data available for many plants, including a range of important crop species with highly duplicated genomes. Along with assisting traditional forward genetics approaches to study gene function, this wealth of new sequence data facilitates extensive reverse genetics-based functional analyses. However, plants featuring high levels of genome duplication as a result of recent polyploidization pose additional challenges for reverse genetic analysis. Here we review reverse genetic analysis in such polyploid plants and highlight key challenges.  相似文献   

14.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

15.

Background

Evolution of sturgeons and paddlefishes (order Acipenseriformes) is inherently connected with polyploidization events which resulted in differentiation of ploidy levels and chromosome numbers of present acipenseriform species. Moreover, allopolyploidization as well as autopolyploidization seems to be an ongoing process in these fishes and individuals with abnormal ploidy levels were occasionally observed within sturgeon populations. Here, we reported occurrence of Siberian sturgeon (Acipenser baerii) male with abnormal ploidy level for this species, accessed its ploidy level and chromosome number and investigate its potential sterility or fertility in comparison with normal individuals of sterlet (A. ruthenus), Russian sturgeon (A. gueldenstaedtii) and Siberian sturgeon (A. baerii).

Results

Acipenser ruthenus possessed 120 chromosomes, exhibiting recent diploidy (2n), A. gueldenstaedtii and A. baerii had ~245 chromosomes representing recent tetraploidy (4n), and A. baerii male with abnormal ploidy level had?~?368 chromosomes, indicating recent hexaploidy (6n). Genealogy assessed from the mtDNA control region did not reveal genome markers of other sturgeon species and this individual was supposed to originate from spontaneous 1.5 fold increment in number of chromosome sets with respect to the number most frequently found in nature for this species. Following hormone stimulation, the spontaneous hexaploid male produced normal sperm with ability for fertilization. Fertilization of A. baerii and A. gueldenstaedtii ova from normal 4n level females with sperm of the hexaploid male produced viable, non-malformed pentaploid (5n) progeny with a ploidy level intermediate to those of the parents.

Conclusion

This study firstly described occurrence of hexaploid individual of A. baerii and confirmed its autopolyploid origin. In addition to that, the first detailed evidence about fertility of spontaneous hexaploid sturgeon was provided. If 1.5 fold increment in number of chromosome sets occurring in diploids, resulted triploids possess odd number of chromosome sets causing their sterility or subfertility due to interference of gametogenesis. In contrast, 1.5 fold increment in number of chromosome sets in naturally tetraploid A. baerii resulted in even number of chromosome sets and therefore in fertility of the hexaploid specimen under study.  相似文献   

16.
The neuromodulatory effects of dopamine on the central nervous system of craniates are mediated by two classes of G protein-coupled receptors (D1 and D2), each comprising several subtypes. A systematic isolation and characterization of the D1 and D2-like receptors was carried out in most of the Craniate groups. It revealed that two events of gene duplications took place during vertebrate evolution, before or simultaneously to the emergence of Gnathostomes. It led to the conservation of two-to-four paralogous receptors (subtypes), depending on the species. Additional duplication of dopamine receptor gene occurred independently in the teleost fish lineage. Duplicated genes were maintained in most of the vertebrate groups, certainly by the acquisition of a few functional characters, specific of each subtypes, as well as by discrete changes in their expression territories in the brain. The evolutionary scenario elaborated from these data suggests that receptor gene duplications were the necessary conditions for the expansion of vertebrate forebrain to occur, allowing dopamine systems to exert their fundamental role as modulator of the adaptive capabilities acquired by vertebrate species.  相似文献   

17.
Genome evolution and biodiversity in teleost fish   总被引:23,自引:0,他引:23  
Volff JN 《Heredity》2005,94(3):280-294
Teleost fish, which roughly make up half of the extant vertebrate species, exhibit an amazing level of biodiversity affecting their morphology, ecology and behaviour as well as many other aspects of their biology. This huge variability makes fish extremely attractive for the study of many biological questions, particularly of those related to evolution. New insights gained from different teleost species and sequencing projects have recently revealed several peculiar features of fish genomes that might have played a role in fish evolution and speciation. There is now substantial evidence that a round of tetraploidization/rediploidization has taken place during the early evolution of the ray-finned fish lineage, and that hundreds of duplicate pairs generated by this event have been maintained over hundreds of millions of years of evolution. Differential loss or subfunction partitioning of such gene duplicates might have been involved in the generation of fish variability. In contrast to mammalian genomes, teleost genomes also contain multiple families of active transposable elements, which might have played a role in speciation by affecting hybrid sterility and viability. Finally, the amazing diversity of sex determination systems and the plasticity of sex chromosomes observed in teleost might have been involved in both pre- and postmating reproductive isolation. Comparison of data generated by current and future genome projects as well as complementary studies in other species will allow one to approach the molecular and evolutionary mechanisms underlying genome diversity in fish, and will certainly significantly contribute to our understanding of gene evolution and function in humans and other vertebrates.  相似文献   

18.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

19.
Genome sizes may vary by orders of magnitude among relatively closely related species. Gene and genome duplications and movements of transposable elements (TEs) can quickly inflate genome sizes. Whole genome duplications (polyploidization) may be an important source of evolutionary innovation and many fast evolving island genera are known or assumed to be polyploids. Our main aim is to shed light on the question of how genome size evolved within a rapidly diversifying island lineage. We report the estimates of DNA content for 27 species of the Hawaiian endemic plant genus Schiedea and its widespread sister genus Honckenya (Caryophyllaceae: Alsinoideae). Unexpectedly, genomes of Schiedea species appeared to be relatively compact (1.41 to 3.74 pg/cell), compared to Honckenya (8.57 to 10.66 pg/cell). Interestingly, Schiedea species from younger islands tended to have larger genomes than species from older islands, which may be explained by activation of TE transpositions in small populations after colonization events that resulted in the formation of new species on younger islands. To test whether the Schiedea genome has undergone recent polyploidization events we measured divergence between 62 pairs of paralogous genes in S. globosa. The distribution of divergence values was unimodal with a mode of 7%, supporting a single polyploidization event. Dating this event using Schiedea/Honckenya divergence (2%) and Schiedea/Silene divergence (11%) we estimate that it might have occurred in the ancestor of the genera Schiedea and Honckenya, but after the split between the subfamilies Alsinoideae and Silenoideae.  相似文献   

20.
Two rounds of whole genome duplication in the ancestral vertebrate   总被引:5,自引:0,他引:5  
Dehal P  Boore JL 《PLoS biology》2005,3(10):e314
The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号