首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proximate and ultimate explanations for behavioural syndromes (correlated behaviours – a population trait) are poorly understood, and the evolution of behavioural types (configuration of behaviours – an individual trait) has been rarely studied. We investigated population divergence in behavioural syndromes and types using individually reared, completely predator‐ or conspecific‐naïve adult nine‐spined sticklebacks (Pungitius pungitius) from two marine and two predatory fish free, isolated pond populations. We found little evidence for the existence of behavioural syndromes, but population divergence in behavioural types was profound: individuals from ponds were quicker in feeding, bolder and more aggressive than individuals from marine environments. Our data reject the hypothesis that behavioural syndromes exist as a result of genetic correlations between behavioural traits, and support the contention that different behavioural types can be predominant in populations differing in predation pressure, most probably as a result of repeated independent evolution of separate behavioural traits.  相似文献   

2.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

3.
4.
Interpopulation differences in body size are of common occurrence in vertebrates, but the relative importance of genetic, maternal, and environmental effects as causes of observed differentiation have seldom been assessed in the wild. Gigantism in pond nine‐spined sticklebacks (Pungitius pungitius Linnaeus, 1758) has been repeatedly observed, but the quantitative genetic basis of population divergence in size has remained unstudied. We conducted a common garden experiment – using ‘pure’ and reciprocal crosses between two populations (‘giant’ pond versus ‘normal’ marine) – to test for the relative importance of additive genetic, non‐additive genetic, and maternal effects on body size after 11 months of growth in the laboratory. We found that body size difference between the two populations in laboratory conditions owed mainly to additive genetic effects, and only to a minor degree to maternal effects. Furthermore, the weak maternal effects were seen only in the offspring of ‘giant’ mothers, and appeared to be mediated through differences in egg size. Thus, the results suggest that gigantism in pond populations of P. pungitius is based on the effects of additively acting genes, rather than to direct environmental induction, or maternal or non‐additive gene action. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 521–528.  相似文献   

5.
Compensatory growth (CG) may be an adaptive mechanism that helps to restore an organisms’ growth trajectory and adult size from deviations caused by early life resource limitation. Yet, few studies have investigated the genetic basis of CG potential and existence of genetically based population differentiation in CG potential. We studied population differentiation, genetic basis, and costs of CG potential in nine‐spined sticklebacks (Pungitius pungitius) differing in their normal growth patterns. As selection favors large body size in pond and small body size in marine populations, we expected CG to occur in the pond but not in the marine population. By manipulating feeding conditions (viz. high, low and recovery feeding treatments), we found clear evidence for CG in the pond but not in the marine population, as well as evidence for catch‐up growth (i.e., size compensation without growth acceleration) in both populations. In the marine population, overcompensation occurred individuals from the recovery treatment grew eventually larger than those from the high feeding treatment. In both populations, the recovery feeding treatment reduced maturation probability. The recovery feeding treatment also reduced survival probability in the marine but not in the pond population. Analysis of interpopulation hybrids further suggested that both genetic and maternal effects contributed to the population differences in CG. Hence, apart from demonstrating intrinsic costs for recovery growth, both genetic and maternal effects were identified to be important modulators of CG responses. The results provide an evidence for adaptive differentiation in recovery growth potential.  相似文献   

6.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity.  相似文献   

7.
Timing of maturation is an important life‐history trait that is likely to be subjected to strong natural selection. Although population differences in timing of maturation have been frequently reported in studies of wild animal populations, little is known about the genetic basis of this differentiation. Here, we investigated population and sex differences in timing of maturation within and between two nine‐spined stickleback (Pungitius pungitius) populations in a laboratory breeding experiment. We found that fish from the high‐predation marine population matured earlier than fish from the low‐predation pond population and males matured earlier than females. Timing of maturation in both reciprocal hybrid crosses between the two populations was similar to that in the marine population, suggesting that early timing of maturation is a dominant trait, whereas delayed timing of maturation in the pond is a recessive trait. Thus, the observed population divergence is suggestive of strong natural selection against early maturation in the piscine‐predator‐free pond population.  相似文献   

8.
Detection of footprints of historical natural selection on quantitative traits in cross‐sectional data sets is challenging, especially when the number of populations to be compared is small and the populations are subject to strong random genetic drift. We extend a recent Bayesian multivariate approach to differentiate between selective and neutral causes of population differentiation by the inclusion of habitat information. The extended framework allows one to test for signals of selection in two ways: by comparing the patterns of population differentiation in quantitative traits and in neutral loci, and by comparing the similarity of habitats and phenotypes. We illustrate the framework using data on variation of eight morphological and behavioral traits among four populations of nine‐spined sticklebacks (Pungitius pungitius). In spite of the strong signal of genetic drift in the study system (average FST = 0.35 in neutral markers), strong footprints of adaptive population differentiation were uncovered both in morphological and behavioral traits. The results give quantitative support for earlier qualitative assessments, which have attributed the observed differentiation to adaptive divergence in response to differing ecological conditions in pond and marine habitats.  相似文献   

9.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

10.
Most studies seeking to provide evolutionary explanations for brain size variability have relied on interspecific comparisons, while intraspecific studies utilizing ecologically divergent populations to this effect are rare. We investigated the brain size and structure of first‐generation laboratory‐bred nine‐spined sticklebacks (Pungitius pungitius) from four geographically and genetically isolated populations originating from markedly different habitats. We found that the relative size of bulbus olfactorius and telencephalon was significantly larger in marine than in pond populations. Significant, but habitat‐independent population differences were also found in relative brain and cerebellum sizes. The consistent, habitat‐specific differences in the relative size of bulbus olfactorius and telencephalon suggest their adaptive reduction in response to reduced (biotic and abiotic) habitat complexity in pond environments. In general, the results suggest that genetically based brain size and structure differences can evolve relatively rapidly and in repeatable fashion with respect to habitat structure.  相似文献   

11.
The mechanosensory lateral line system of fishes is an important organ system conveying information crucial to individual fitness. Yet, our knowledge of lateral line diversity is almost exclusively based on interspecific studies, whereas intraspecific variability and possible population divergence have remained largely unexplored. We investigated lateral line system variability in four marine and five pond populations of nine-spined stickleback (Pungitius pungitius). We found significant differences in neuromast number between pond and marine fish. In particular, three of seventeen lateral line regions (viz. caudal peduncle superficial neuromasts; canal neuromasts from the anterior trunk and caudal peduncle) showed strong divergence between habitats. Similar results were obtained with laboratory-reared individuals from a subset of populations, suggesting that the patterns found in nature likely have a genetic basis. Interestingly, we also found habitat-dependent population divergence in neuromast variability, with pond populations showing greater heterogeneity than marine populations, although only in wild-caught fish. A comparison of neutral genetic (F(ST)) and phenotypic (P(ST)) differentiation suggested that natural selection is likely associated with habitat-dependent divergence in neuromast counts. Hence, the results align with the conclusion that the mechanosensory lateral line system divergence among marine and pond nine-spined sticklebacks is adaptive.  相似文献   

12.
The relaxation of predation and interspecific competition are hypothesized to allow evolution toward “optimal” body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine‐spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine pond (impoverished fish community) populations. In line with theory, pond fish tended to be larger than their marine or lake conspecifics, sometimes reaching giant sizes. In two geographically independent cases when predatory fish had been introduced into ponds, fish were smaller than those in nearby ponds lacking predators. Pond fish were also smaller when found in sympatry with three‐spined stickleback (Gasterosteus aculeatus) than those in ponds lacking competitors. Size‐at‐age analyses demonstrated that larger size in ponds was achieved by both increased growth rates and extended longevity of pond fish. Results from a common garden experiment indicate that the growth differences had a genetic basis: pond fish developed two to three times higher body mass than marine fish during 36 weeks of growth under similar conditions. Hence, reduced risk of predation and interspecific competition appear to be chief forces driving insular body size evolution toward gigantism.  相似文献   

13.
Specialization for the use of different resources can lead to ecological speciation. Accordingly, there are numerous examples of ecologically specialized pairs of fish “species” in postglacial lakes. Using a polymorphic panel of single nucleotide variants, we tested for genetic footprints of within‐lake population stratification in nine‐spined sticklebacks (Pungitius pungitius) collected from three habitats (viz. littoral, benthic, and pelagic) within a northern Swedish lake. Analyses of admixture, population structure, and relatedness all supported the conclusion that the fish from this lake form a single interbreeding unit.  相似文献   

14.
Theory predicts that the sex making greater investments into reproductive behaviours demands higher cognitive ability, and as a consequence, larger brains or brain parts. Further, the resulting sexual dimorphism can differ between populations adapted to different environments, or among individuals developing under different environmental conditions. In the nine‐spine stickleback (Pungitius pungitius), males perform nest building, courtship, territory defence and parental care, whereas females perform mate choice and produce eggs. Also, predation‐adapted marine and competition‐adapted pond populations have diverged in a series of ecologically relevant traits, including the level of phenotypic plasticity. Here, we studied sexual dimorphism in brain size and architecture in nine‐spined stickleback from marine and pond populations reared in a factorial experiment with predation and food treatments in a common garden experiment. Males had relatively larger brains, larger telencephala, cerebella and hypothalami (6–16% divergence) than females, irrespective of habitat. Females tended to have larger bulbi olfactorii than males (13%) in the high food treatment, whereas no such difference was found in the low food treatment. The strong sexual dimorphism in brain architecture implies that the different reproductive allocation strategies (behaviour vs. egg production) select for different investments into the costly brains between males and females. The lack of habitat dependence in brain sexual dimorphism suggests that the sex‐specific selection forces on brains differ only negligibly between habitats. Although significance of the observed sex‐specific brain plasticity in the size of bulbus olfactorius remains unclear, it demonstrates the potential for sex‐specific neural plasticity.  相似文献   

15.
16.
Wright  H. A.  Wootton  R. J.  & Barber  I. 《Journal of fish biology》2003,63(S1):259-259
Three‐spined sticklebacks ( Gasterosteus aculeatus ) exhibit considerable inter‐population variation in behaviour, morphology and life history characteristics. Such population‐level variation can be generated directly by environmental characteristics of the water body they inhabit ( e.g . temperature regimes, which directly influence growth rates) but local genetic adaptation is also important. By performing 'common garden' experiments, in which laboratory‐bred individuals from separate populations are raised under standardized controlled laboratory conditions, it is possible to identify genetically‐based population‐level phenotype variation. Here we present the results of two studies, carried out using juvenile three‐spined sticklebacks bred from parental stock from five geographically isolated UK populations and reared under standard laboratory ('common garden') conditions. Firstly we report the results of a study examining population‐level variation in patterns of early growth, in which we tracked the growth of replicate groups of full‐sibs from all five populations, from hatching to 126d. Secondly we report the results of an experimental behavioural study, designed to examine population‐level variation in the exploratory or 'boldness' behaviour of laboratory‐bred and reared juvenile three‐spined sticklebacks from the same five populations. We discuss how adaptive genetically based patterns of behaviour and growth may co‐vary across populations.  相似文献   

17.
To investigate the link between personality and maximum food intake of inactive individuals, food‐deprived three‐spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace‐of‐life theory predicting that life‐history strategies are linked to boldness.  相似文献   

18.
Environmental differences among populations are expected to lead to local adaptation, while spatial or temporal environmental variation within a population will favour evolution of phenotypic plasticity. As plasticity itself can be under selection, locally adapted populations can vary in levels of plasticity. Nine‐spined stickleback (Pungitius pungitius) originating from isolated ponds (low piscine predation risk, high competition) vs. lake and marine populations (high piscine predation risk, low competition) are known to be morphologically adapted to their respective environments. However, nothing is known about their ability to express phenotypic plasticity in morphology in response to perceived predation risk or food availability/competition. We studied predator‐induced phenotypic plasticity in body shape and armour of marine and pond nine‐spined stickleback in a factorial common garden experiment with two predator treatments (present vs. absent) and two feeding regimes (low vs. high). The predation treatment did not induce any morphological shifts in fish from either habitat or food regime. However, strong habitat‐dependent differences between populations as well as strong sexual dimorphism in both body shape and armour were found. The lack of predator‐induced plasticity in development of the defence traits (viz. body armour and body depth) suggests that morphological anti‐predator traits in nine‐spined stickleback are strictly constitutive, rather than inducible. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

19.
The three‐spined stickleback is a widespread Holarctic species complex that radiated from the sea into freshwaters after the retreat of the Pleistocene ice sheets. In Switzerland, sticklebacks were absent with the exception of the far northwest, but different introduced populations have expanded to occupy a wide range of habitats since the late 19th century. A well‐studied adaptive phenotypic trait in sticklebacks is the number of lateral plates. With few exceptions, freshwater and marine populations in Europe are fixed for either the low plated phenotype or the fully plated phenotype, respectively. Switzerland, in contrast, harbours in close proximity the full range of phenotypic variation known from across the continent. We addressed the phylogeographic origins of Swiss sticklebacks using mitochondrial partial cytochrome b and control region sequences. We found only five different haplotypes but these originated from three distinct European regions, fixed for different plate phenotypes. These lineages occur largely in isolation at opposite ends of Switzerland, but co‐occur in a large central part. Across the country, we found a strong correlation between a microsatellite linked to the high plate ectodysplasin allele and the mitochondrial haplotype from a region where the fully plated phenotype is fixed. Phylogenomic and population genomic analysis of 481 polymorphic amplified fragment length polymorphism loci indicate genetic admixture in the central part of the country. The same part of the country also carries elevated within‐population phenotypic variation. We conclude that during the recent invasive range expansion of sticklebacks in Switzerland, adaptive and neutral between‐population genetic variation was converted into within‐population variation, raising the possibility that hybridization between colonizing lineages contributed to the ecological success of sticklebacks in Switzerland.  相似文献   

20.
Dispersal is considered to be a species‐specific trait, but intraspecific variation can be high. However, when and how this complex trait starts to differentiate during the divergence of species/lineages is unknown. Here, we studied the differentiation of movement behaviour in a large salamander population (Salamandra salamandra), in which individual adaptations to different habitat conditions drive the genetic divergence of this population into two subpopulations. In this system, salamanders have adapted to the deposition and development of their larvae in ephemeral ponds vs. small first‐order streams. In general, the pond habitat is characterized as a spatially and temporally highly unpredictable habitat, while streams provide more stable and predictable conditions for the development of larvae. We analysed the fine‐scale genetic distribution of larvae, and explored whether the adaptation to different larval habitat conditions has in turn also affected dispersal strategies and home range size of adult salamanders. Based on the genetic assignment of adult individuals to their respective larval habitat type, we show that pond‐adapted salamanders occupied larger home ranges, displayed long‐distance dispersal and had a higher variability of movement types than the stream‐adapted individuals. We argue that the differentiation of phenotypically plastic traits such as dispersal and movement characteristics can be a crucial component in the course of adaptation to new habitat conditions, thereby promoting the genetic divergence of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号