首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented to show that dimensions and proportions which may vary with size are not valid characters for determining the generic placement of grebe species; that there is no valid reason for placing Thiornis sociata in the genus Podiceps; that if this species belongs in any Recent genus it is best placed in Tachybaptus, and that it is best retained in Thiornis pending further study.  相似文献   

2.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

3.
A new genus and species of Ziphiidae, Dagonodum mojnum gen. nov., sp. nov., from the upper Miocene Gram Formation (c. 9.9–7.2 Ma) represents the first occurrence of the family in Denmark. This long‐snouted ziphiid is characterized by two pairs of mandibular tusks, the Eustachian outlet that approximately levels with the dorsalmost margin of the posterior portion of the involucrum, and the left trapezoid nasal with a posteromedial projection into the frontal. A phylogenetic analysis including 25 species and 69 characters was conducted. Dagonodum mojnum is placed in a basal ziphiid clade as the sister taxon of Messapicetus. The specimen is probably a male, because it has enlarged tusks. Alternatively, females could also be involved in fights and develop erupted tusks as in the extant Berardius. Although less well supported, this interpretation proposes that aggressive interactions were not restricted to males in stem‐ziphiids. With a thickened thyrohyal and the presence of a precoronoid crest, D. mojnum was able to use suction feeding, but was less specialized to it compared to extant ziphiids. The elongated neck of D. mojnum less optimized to perform deep dives, and the shallow depth at which the Gram Formation was deposited corroborates the hypothesis that at least part of the stem‐ziphiids were not regular deep divers.  相似文献   

4.
The Central Asian racerunner, Eremias velox, is a widely distributed lizard of the Eurasian lacertid genus Eremias. Nucleotide sequences of mitochondrial genes, cyt b and 12S rDNA from 13 geographically distant localities in Iran and Central Asia, were analysed. Phylogenetic analyses of the sequence data unambiguously recovered five major clades within the E. velox complex with a high level of genetic divergence, indicating long periods of isolation. The basal position of the Iranian clades in the phylogenetic trees suggests that the E. velox clade originated on the Iranian plateau in the Middle Miocene. According to our calibrations, the northern Iranian clade diverged first some 10–11 Ma and that the Central Asian lineages split from the northeastern Iranian lineage approximately 6 Ma, most likely as a result of uplifting of the Kopet‐Dagh Mountains in the northern margin of the Iranian plateau. Topology of the phylogenetic trees, combined with the degree of the genetic distances among the independent lineages recovered in this study, provide a solid foundation for a fundamental revision of the taxonomic status of the major clades within this species complex.  相似文献   

5.
6.
The fossil record of storks (Aves, Ciconiidae) includes a relatively large number of specimens from the Middle Eocene onwards, but no taxon is as well represented as Grallavis edwardsi form the Early Miocene of the Allier region in central France. Despite this, the phylogenetic placement of G. edwardsi among other storks has remained elusive not least because of the lack of a robust phylogenetic framework for living storks. To find out how G. edwardsi relates to recent Ciconiidae, we performed a phylogenetic analysis based on osteological features including all living genus‐level taxa of the Ciconiidae. We show that the previously reported similarities to the extant taxa Ephippiorhynchus and Jabiru are based on plesiomorphic features, and our analysis supports a sister group relationship between Grallavis edwardsi and Leptoptilos. Our results are also consistent with a basal divergence within Ciconiidae between Mycteria and Anastomus, which are among the smallest storks, and all other storks. A sister group relationship between storks of the genus Ciconia and all large storks (Leptoptilini) is recovered albeit with weak support, which may be due to homoplastic features linked to their large size. Grallavis edwardsi possessed several osteological adaptations suited for scavenging, and despite lacking some derived traits characteristic of Leptoptilos, it is likely to have been a precursor of large marabou and adjutant storks.  相似文献   

7.
Fossil fern fronds referable to the extant fern genus Davallia (Polypodiales: Davalliaceae) bearing sporangia with in situ spores are described from the Early Miocene Foulden Maar diatomite deposit, Otago, New Zealand. The fronds are the first published Southern Hemisphere macrofossil record for the family and provide valuable palaeoclimate data supporting warm conditions in Early Miocene New Zealand. The matching of Davallia fronds to the form spore taxon Polypodiisporites radiatus shows that the genus has had a long, apparently continuous history throughout late Cenozoic New Zealand.  相似文献   

8.
9.
The mouse opossums of the genus Thylamys constitute a group of species mainly adapted to open xeric‐like habitats and restricted to the southern portion of South America. We used molecular data (mitochondrial and nuclear sequences) to evaluate the phylogenetic and biogeographical relationships of all currently known living species of the genus, recognizing a new taxon from the middle and high elevations of the Peruvian Andes and evaluating the phylogenetic structuring within T. pallidior and T. elegans, as well as the validity of T. sponsorius, T. cinderella and T. tatei, and the haplogroups recognized within T. pusillus. Our results confirm the monophyly of the genus and that the Caatinga and the Cerrado inhabitants Thylamys karimii and T. velutinus are the most basal species in the radiation of Thylamys. We also calibrated a molecular clock which hypothesized a time of origin of the genus of about 24 My, with most species differentiating in middle and late Miocene and Plio‐Pleistocene times of South America.  相似文献   

10.
The bivalve clade Heterodonta encompasses more than half of the extant bivalve species and is presently considered a derived group of the modern bivalves (Newell 1965 ; Waller 1998 ). Heterodonta is subdivided into two major lineages, the hyperdiverse Euheterodonta and Archiheterodonta. The latter comprises four relatively small extant families: Astartidae, Carditidae, Condylocardiidae and Crassatellidae, whose relationships and internal phylogeny are poorly understood. We assessed the phylogeny of archiheterodont bivalves using a multilocus data set comprised of molecular sequence data from six loci (18S rRNA, 28S rRNA, cytochrome c oxidase subunit I, cytochrome b, internal transcribed spacer 2 and histone H3). Resultant data sets of ~4 Kb of concatenated molecular sequence data were analysed using probabilistic approaches (maximum likelihood and Bayesian inference) and parsimony direct optimization. We recovered strong support for the monophyly of Archiheterodonta, within which Astartidae is the sister group of Crassatellidae, and these two constitute the sister clade of Carditidae, which is paraphyletic with respect to Condylocardiidae. The relationships among the constituent species groups were evaluated in the context of the archiheterodont fossil record through the estimation of divergence times. Diversification times of archiheterodont families were congruent with bounded estimates of origins based on palaeontological data: Archiheterodonta diversified during the Devonian, 373.1 Ma (95% highest posterior density interval [HPD] 325.8–428.2); Crassatelloidea around the Carboniferous, 330.1 Ma (95% HPD 291.0–372.7); Crassatellidae around the Triassic, 224.0 (95% HPD 140.6–320.2); Astartidae around the Permian, 288.2 Ma (95% HPD 269.2–307.3); and Carditoidea around the Jurassic, 178.8 Ma (95% HPD 120.9–228.3).  相似文献   

11.
Aim To determine the origin and diversification of monachine seals using a phylogenetic framework. Methods Molecular sequence data from three mitochondrial genes (cyt b, ND1 and 12S), and one nuclear marker (an intron from the α‐lactalbumin gene) were examined from all extant species of monachine seals. Maximum likelihood and partitioned Bayesian inference were used to analyse separate and combined (mitochondrial + nuclear) data sets. Divergence times were estimated from the resultant phylogeny using nonparametric rate smoothing as implemented by the program r8s. Results Mirounga, Monachus and the Lobodontini form three well‐supported clades within a monophyletic Monachinae. Lobodontini + Mirounga form a clade sister to Monachus. Molecular divergence dates indicate that the first split within the Monachinae (Lobodontini + Mirounga clade and Monachus) occurred between 11.8 and 13.8 Ma and Mirounga, Monachus and the Lobodontini originated 2.7–3.4, 9.1–10.8 and 10.0–11.6 Ma, respectively. Main conclusions Two main clades exist within Monachinae, Monachus and Lobodontini + Mirounga. Monachus, a warm water clade, originated in the North Atlantic and maintained the temperate water affinities of their ancestors as they diversified in the subtropic regions of the Northern Hemisphere. The cold‐water clade, Lobodontini + Mirounga, dispersed southward to the cooler climates of the Southern Hemisphere. The Lobodontini continued south until reaching the Antarctic region where they diversified into the present‐day fauna. Mirounga shows an anti‐tropical distribution either reflective of a once cosmopolitan range that was separated by warming waters in the tropics or of transequatorial dispersal.  相似文献   

12.
Studies on habitat selection by waterbirds usually describe large-scale distribution of populations or species but the dispersion within lakes is an understudied aspect. Detailed mapping of horned grebes (Podiceps auritus (L.)) on the North Basin of Lake Myvatn, Iceland, was carried out in late summer 2000 in order to compare their dispersion with water depth and submerged vegetation. Depth and vegetation were measured on sampling sites that were evenly distributed over the North Basin, and the information obtained compared to the distribution of the grebes. Four species of submerged macrophytes dominated in the North Basin; Myriophyllum spicatum, M. alterniflorum, Potamogeton filiformis and P. perfoliatus, mainly at depths <2.5 m. The grebes seemed to prefer to dive in shallow areas vegetated with stands of Myriophyllum spp. Densities of three-spined sticklebacks Gasterosteus aculeatus were compared in stands of M. spicatum and P. filiformis in order to estimate food availability. No difference was found, so the sticklebacks could not explain the preference of the grebes for areas vegetated with Myriophyllum spp. Nevertheless, this study indicates that shallow areas, vegetated with Myriophyllum spp., are important feeding areas for the horned grebe.  相似文献   

13.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

14.
We performed a phylogenetic analysis focused on the hydrophiloid family Helophoridae (Coleoptera: Polyphaga) in order to test the phylogenetic position of selected Mesozoic fossils assigned to the Hydrophiloidea. The analysis is based on 92 characters of larvae and adults, and includes all extant subgenera of Helophorus and representatives of all other extant hydrophiloid families. Based on this analysis, we provide additional evidence for the monophyly of the helophorid lineage containing the families Helophoridae, Georissidae and Epimetopidae, as well as the first hypothesis on the phylogenetic relationships within Helophorus, revealing three main clades: Lihelophorus, Rhopalohelophorus and the clade of sculptured small subgenera; the subgenera Helophorus s.str., Gephelophorus, Trichohelophorus and Transithelophorus are recognized as paraphyletic or polyphyletic. Inclusion of fossil species in the analysis reveals the Mesozoic genera Hydrophilopsia Ponomarenko, Laetopsia Fiká?ek et al. (adult forms) and Cretotaenia Ponomarenko (larval form) as basal extinct clades of the helophorid lineage, the former genus Mesosperchus Ponomarenko as containing probable stem taxa of Helophorus and the former genus Mesohelophorus Ponomarenko as a member of the Helophorus clade containing extant sculptured subgenera. The extant subgenus Thaumhelophorus syn.nov. is synonymized with Rhopalohelophorus. Our results show that the family Helophoridae may be dated back to the late Jurassic (c. 150 Ma) and the extant clades of Helophorus back to the Early Cretaceous (c. 136 Ma). The basal groups of Helophorus and the supposed basal extinct lineages of the helophorid lineages are shown to be aquatic as adults. A single origin of trichobothria and ventral hydrophobic pubescence in the common ancestor of the Hydrophiloidea is hypothesized, indicating ancestral aquatic habits in the adult stage for the whole Hydrophiloidea.  相似文献   

15.
The phylogeny of Cyclops (~30 spp.), a predominantly Palearctic cold‐adapted genus, was reconstructed based on morphological and molecular characters. The morphological analysis used extensive taxon sampling from the entire Holarctic range of the genus and included 53 morphological characters. Polymorphic traits were coded by the “unordered,” “unscaled” and “scaled” methods; maximum parsimony criterion was applied in tree building. Molecular phylogenetic reconstructions utilized partial nuclear 18S and 28S ribosomal genes, mitochondrial cytochrome oxidase I and complete internal transcribed spacer regions I and II, albeit with limited taxon sampling. Bayesian inference and maximum likelihood were used in these tree reconstructions. The molecular characters were used both in combination with morphology and as an independent test of the basal relationships inferred from morphology. Monophyly of the genus received strong support in both the morphological and molecular phylogenies; the basal relationships remain unresolved. The morphology‐based phylogenies, along with the geographic distribution patterns and ecological traits, supported monophyly of the ankyrae?ladakanus clade, scutifer‐clade (C. scutifer, C. jashnovi, C. columbianus), kolensis‐clade (C. kolensis, C. kikuchii, C. vicinus, C. furcifer, C. insignis, C. alaskaensis), abyssorum‐clade (C. abyssorum s. str., C. abyssorum larianus, C. ricae, C. sevani) and divergens‐clade (South Carpathian “Cyclops sp. Y,” C. mauritaniae, C. divergens, C. bohater, C. lacustris). Relationships among European and North American populations of C. scutifer and C. columbianus based on partial sequences of the 12S mitochondrial gene show C. scutifer to be paraphyletic, suggesting two independent invasions into North America via the Bering Land Bridge from Siberia to Alaska.  相似文献   

16.
Although Conraua goliath is well known as the largest living frog species, the diversity and evolution of the genus Conraua across sub-Saharan Africa remain poorly understood. We present multilocus phylogenetic analyses of the six currently recognized species that provide insights into divergence times, biogeography, body size evolution and undescribed species. An analysis of divergence times demonstrates that crown-group Conraua arose some time during the latest Oligocene to mid-Miocene followed by divergence into major lineages in the mid-Miocene that may reflect the fragmentation of widespread tropical forests in Africa that began at this time. We find three pairs of sister species, C. crassipes + C. beccarii, C. alleni + C. derooi and C. goliath + C. robusta, each of which diverged during the Miocene. These relationships reject phylogenetic hypotheses based solely on biogeography as the geographically peripheral C. beccarii from north-eastern Africa is nested within western African species and the Central African species do not form a clade. Our species delimitation analyses provide support for undescribed species in C. alleni, C. beccarii and C. derooi, and possibly C. crassipes, suggesting that the current taxonomy substantially underestimates species diversity. There is no clear directional trend of either increasing or decreasing body size in Conraua and the three largest species do not form a clade. With a robust phylogenetic hypothesis in hand, further field-based studies are needed to understand the evolution of morphology and life history in this charismatic African anuran clade.  相似文献   

17.
18.
Africa, inclusive of the West Indian Ocean islands, harbours 11 of the world's 16 extant testudinid genera. Fossil records indicate that testudinids originated in Asia and dispersed first to North America and Europe (Early Eocene) and later to Africa (Late Eocene). We used mitochondrial (1870 bp) and nuclear (1416 bp) DNA sequence data to assess whether molecular data support the late cladogenesis of Southern African testudinid lineages. Our results revealed strong support for the monophyly of a clade consisting of Kinixys, the two Malagasy genera and four Southern African genera (Psammobates, Stigmochelys, Homopus and Chersina). Kinixys diverged from this clade in the Late Palaeocene, suggesting that testudinids occupied Africa at an earlier date than indicated by fossil records. The Southern African tortoises consist of three, strongly supported clades: Psammobates + Stigmochelys; the five‐toed Homopus + Chersina; and the four‐toed Homopus. Due to the paraphyly of Homopus, we propose the taxonomic resurrection of Chersobius for the five‐toed Homopus species (boulengeri, signatus and solus). Cladogenesis at the genus level occurred mainly in the Eocene, with Chersina and Chersobius diverging in the Oligocene. The latter divergence coincided with species‐level radiations within Homopus (areolatus and femoralis) and Psammobates (oculifer, geometricus and tentorius). Our phylogeny could not resolve relationships within Psammobates, indicating rapid speciation between the Late Oligocene and Early Miocene. The Chersobius species were the last to diverge in the Early to Mid‐Miocene. By the Mid‐Miocene, P. tentorius started to differentiate into four lineages instead of the three recognized subspecies: P. t. tentorius, P. t. trimeni and two P. t. verroxii subclades occurring north and south of the Orange River, respectively. Terminal radiations in several taxa suggest the existence of cryptic species and a more diverse tortoise fauna than currently recognized. Factors contributing to this diversity may include the early origin of African testudinids and climatic fluctuations over a heterogeneous landscape.  相似文献   

19.
A finely preserved skull with mandible and teeth associated, from the Latest Miocene beds (ca. 6 Ma) of the Pisco Formation, Sud-Sacaco, Peru, represents a new physeteroid genus and species, Acrophyseter deinodon. This moderate size sperm whale is characterized, among others, by: the short rostrum, the mandible distinctly curved upwards, large teeth very close together (12 on each upper tooth row and 13 on each lower tooth row), the lateral margin of the maxilla along the rostrum base much lower than the orbit roof, a wide supracranial basin dorsally overhanging the right orbit and limited to the cranium and a large temporal fossa dorsomedially elevated. A preliminary cladistic analysis provides a phylogenetic position of Acrophyseter nested within the stem-Physeteroidea, more basal than the clade Kogiidae + Physeteridae. The morphology of the oral apparatus and of the temporal fossa suggests that Acrophyseter was able to feed on large preys.  相似文献   

20.
The white‐bellied rat, Niviventer, is a genus endemic to Southeast Asia and China. However, the interspecific phylogenetic relationships and species diversity of this genus remain poorly understood. In the present study, single and multi‐locus analyses were performed. Phylogenetic reconstruction on Cytochrome b (512 individuals, including data from Genbank) revealed five major clades with approximately 35 operational taxonomic units (OTUs), a number twice the existing taxonomy. The first clade (Nlangbianis species group) was the earliest diverged. The second clade (N. fulvescens species group) diverged in Southeast Asia, the south and lower altitude regions of the Hengduan Mountains, and Southeast China. The third clade (the N. eha species group) is endemic to high altitudes in Northwest Yunnan and the central region of Himalaya. The fourth clade (the N. andersoni species group), is mainly confined to alpine regions of the Hengduan Mountains. The fifth clade (Nconfucianus species group) is mainly distributed in the north and higher altitude regions of eastern Himalaya, the Hengduan Mountains and Taiwan, with the complex also invading central and northern China. Results from the combined dataset of four genes (Cytochrome b, Cytochrome oxidase subunit I, the D‐loop sequence of the mitochondrial genome and the first exon of the nuclear interphotoreceptor retinoid binding protein) for 82 representative individuals from China generally coincide with the result of the single gene, with 12 OTUs identified. These results provide a preliminary framework for the existing classification of this highly diversified genus. The divergence time of Niviventer based on the four gene topology was dated to the late Miocene ~6.41 Ma. Significant differences were detected in the general body form changes among these units based on voucher specimens. Moreover, geometric morphometric analysis of the cranium shape of voucher specimens indicated significant differences among five major species groups. Shape divergence of the cranium among several OTUs within the N. confucinaus complex is also significant. Our results provide further evidence for rapid and highly underestimated diversification of Niviventer both in genetics and morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号