首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PAR proteins have an essential and conserved function in establishing polarity in many cell types and organisms. However, their key upstream regulators remain to be identified. In C. elegans, regulators of the PAR proteins can be identified by their ability to suppress the lethality of par-2 mutant embryos. Here we show that a nos-3 loss of function mutant suppresses the lethality of par-2 mutants by regulating PAR-6 protein levels. The suppression requires the activity of the sex determination genes fem-1/2/3 and of the cullin cul-2. FEM-1 is a substrate-specific adaptor for a CUL-2-based ubiquitin ligase (CBCFEM-1). Interestingly, we find that CUL-2 is required for the regulation of PAR-6 levels and that PAR-6 physically interacts with FEM-1. Our data strongly suggest that PAR-6 levels are regulated by the CBCFEM-1 ubiquitin ligase thereby uncovering a novel role for the FEM proteins and cullin-dependent degradation in regulating PAR proteins and polarity processes.  相似文献   

2.
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7 Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6 Mbp to 8.1 Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1T, Roseimaritima ulvae UC8T and Mariniblastus fucicola FC18T shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion.  相似文献   

3.
The electrophoretic properties of ribosomes and ribosomal proteins of coniferous seeds were determined on polyacrylamide gels. Dry seeds of jack pine (Pinus banksiana Lamb.) contained 80S monoribosomes; polysomes were absent. After 48 hr of imbibition the seeds contained monoribosomes and polysomes. The MWs of the ribosomal proteins of the cytoplasm and chloroplasts were 10 to 82 × 103 and 9 to 65 × 103 respectively. Ribosormal proteins from Pinus, Abies, and Pseudotsuga were electrophoretically similar.  相似文献   

4.
The Mg2+ precipitation method has been adapted for isolation of ribosomes from roots of wheat. The ribosomes prepared by this procedure show A260/A280 = 1.6 and A260/A235 = 1.3 and contain 44d% RNA and 56% ribosomal proteins. There are no detectable differences in the ribosomal protein complement and accessibility of the ribosomal proteins to phosphorylation between ribosomes isolated by this procedure and those prepared by classical ultracentrifugation methods. The ribosomes are active in a poly-U directed cell-free system for protein synthesis.  相似文献   

5.
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.  相似文献   

6.
RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of the Nudix hydrolase family, we set out to determine whether other members of this family of proteins also contain intrinsic RNA decapping activity. Here we demonstrate that six additional mouse Nudix proteins—Nudt2, Nudt3, Nudt12, Nudt15, Nudt17, and Nudt19—have varying degrees of decapping activity in vitro on both monomethylated and unmethylated capped RNAs. The decapping products from Nudt17 and Nudt19 were analogous to Dcp2 and predominantly generated m7GDP, while cleavage by Nudt2, Nudt3, Nudt12, and Nudt15 was more pleiotropic and generated both m7GMP and m7GDP. Interestingly, all six Nudix proteins as well as both Dcp2 and Nudt16 could hydrolyze the cap of an unmethylated capped RNA, indicating that decapping enzymes may be less constrained for the presence of the methyl moiety. Investigation of Saccharomyces cerevisiae Nudix proteins revealed that the yeast homolog of Nudt3, Ddp1p, also possesses decapping activity in vitro. Moreover, the bacterial Nudix pyrophosphohydrolase RppH displayed RNA decapping activity and released m7GDP product comparable to Dcp2, indicating that decapping is an evolutionarily conserved activity that preceded mammalian cap formation. These findings demonstrate that multiple Nudix family hydrolases may function in mRNA decapping and mRNA stability.  相似文献   

7.
SYNOPSIS. Division and epimastigote-to-trypomastigote transformation of Trypanosoma cruzi were observed in O'Daly's SM medium supplemented, in place of whole fetal calf serum, with fractions of this serum, its partially purified proteins, or with mixtures of these fractions and proteins. In addition to their division-promoting effects, most but not all serum fractions stimulated [3H]thymidine uptake by the flagellates. As revealed by TEAE-cellulose column chromatography and immunoelectrophoresis, the serum fractions were altered during the logarithmic growth phase of the trypanosomes.  相似文献   

8.
Entomopoxvirus (EPV) occlusion bodies were isolated from virus infected nymphs of the grasshoppers Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis. Separation of the viral structural proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave unique protein patterns for each of the three viruses. An occlusion body protein of approximately 100,000 MW was isolated from each virus. Cleavage of viral DNA with HinddIII and BamHI restriction endonucleases and separation of the fragments by agarose gel electrophoresis gave different DNA fragment patterns for each of the three entomopoxviruses. Molecular weight estimates of 120 × 106 for M. sanguinipes EPV DNA, 129 × 106 for A. conspirsa EPV DNA, and 125 × 106 for P. nebrascensis EPV DNA were calculated from the sizes of the viral DNA fragments. Approximately 55% base sequence homology was detected by Southern hybridization of α-32P-labeledM. sanguinipes EPV DNA with P. nebrascensis DNA. No base sequence homology was detected by Southern hybridization of labeled M. sanguinipes EPV DNA to Othnonius batesi EPV DNA (Coleoptera), Amsacta moorei EPV DNA (Lepidoptera), Euxoa auxiliaris EPV DNA (Lepidoptera), and vaccinia virus DNA fragments.  相似文献   

9.
This study focused on two hydrophobic fractions (HF-A and HF-B) isolated from porcine lung surfactant (LS) that had similar phospholipid composition, but HF-A consisted of the hydrophobic LS specific proteins (SP-B and SP-C), in contrast to HF-B. Monolayers spread in a Langmuir trough were formed at the air/water interface of both fractions and the rate of adsorption-desorption and the respreading potential of the LS constituents was studied during six consecutive compression/decompression cycles of the monolayers. By drawing a comparison between the behavior of HF-A and HF-B monolayers on the subphase of 150 mm NaCl, either with or without additional Ca2+, we estimated the role of hydrophobic LS proteins and Ca2+ ions for LS surface activity. The results demonstrated much higher ability of the HF-A sample, compared to HF-B, to maintain lower surface tension (γ) during monolayer compression and its better respreading capacity during decompression. For instance, at a surface concentration corresponding to 80 Å2 per phospholipid molecule, the HF-A monolayers showed a much lower γ max value (surface tension at 100% of the trough area), being ca. 31.0 mN/m, compared to the HF-B monolayers (γ max? 62.0 mN/m). The surface tension after compression to 20% of the initial area (γ min) reached ca. 7.0 and 19.0 mN/m in the HF-A and HF-B monolayers, respectively. Better respreading of the HF-A monolayers compared to the HF-B monolayers was due to the faster adsorption and spreading of LS phospholipids during decompression, facilitated by the hydrophobic proteins. As the phospholipid composition of both fractions was similar, we showed that the hydrophobic surfactant proteins were responsible also for the prevention of the irreversible loss of material from the surface during monolayer compression/decompression. The effects observed demonstrated also that the hydrophobic surfactant proteins were the stronger determinant, compared with Ca2+ ions, for the surface tension decrease and respreading of the monolayers during film compression/decompression. For instance, when the HF-A monolayers were spread on a subphase with an additional 5 mm Ca2+ ion content, no significant changes were detected in the γ min and γ max values between the first and sixth cycle, compared to the monolayers spread on a subphase of 150 mm NaCl only. However, in the absence of positively charged SP-B and SP-C (HF-B sample) in highly compressed monolayers, Ca2+ ions were able to cause the effects shown by SP-B and SP-C, although to a less extent. The role of the electrostatic and hydrophobic interactions is discussed for the better respreading of LS components in the presence of LS proteins and Ca2+ ions.  相似文献   

10.
11.
Ramasamy R., Jamnadas H. & Mutinga M.J. 1981. Proteins and surface proteins of Leishmania promastigotes and their possible relevance to the characterisation of strains. International Journal for Parasitology11: 387–390. Two strains of Leishmania isolated from phlebotomine flies and another one from a patient with kala-azar were grown in culture as promastigotes. They were analysed for protein composition and surface proteins by polyacrylamide gel electrophoresis after surface radiolabelling. Differences were observed in the characteristic patterns of proteins and surface proteins between the two strains that are likely to be Leishmania donovani and the other strain. Such differences may prove valuable in the classification of Leishmania strains.  相似文献   

12.
Three adaptor molecules of the Dok family, Dok-1, Dok-2 and Dok-3 are expressed in macrophages and are involved in the negative regulation of signaling in response to lipopolysaccharide and various cytokines and growth factors. We investigated the role and the fate of these proteins following infection with Leishmania major promastigotes in macrophages. The protozoan parasite L. major causes cutaneous leishmaniasis and is known for its capacity to alter host-cell signaling and function. Dok-1/Dok-2−/− bone marrow-derived macrophages displayed normal uptake of L. major promastigotes. Following Leishmania infection, Dok-1 was barely detectable by confocal microscopy. By contrast, phagocytosis of latex beads or zymosan led to the recruitment of Dok-1 to phagosomes. In the absence of the Leishmania pathogenesis-associated metalloprotease GP63, Dok-1 was also, partially, recruited to phagosomes containing L. major promastigotes. Further biochemical analyses revealed that similar to Dok-1, Dok-2 and Dok-3 were targets of GP63. Moreover, we showed that upon infection with wild-type or Δgp63 L. major promastigotes, production of nitric oxide and tumor necrosis factor by interferon-γ-primed Dok-1/Dok-2−/− macrophages was reduced compared to WT macrophages. These results suggest that Dok proteins may be important regulators of macrophage responses to Leishmania infection.  相似文献   

13.
The Cdc28 protein kinase subunits, Cks1 and Cks2, play dual roles in Cdk-substrate specificity and Cdk-independent protein degradation, in concert with the E3 ubiquitin ligase complexes SCFSkp2 and APCCdc20. Notable targets controlled by Cks include p27 and Cyclin A. Here, we demonstrate that Cks1 and Cks2 proteins interact with both the MllN and MllC subunits of Mll1 (Mixed-lineage leukaemia 1), and together, the Cks proteins define Mll1 levels throughout the cell cycle. Overexpression of CKS1B and CKS2 is observed in multiple human cancers, including various MLL-rearranged (MLLr) AML subtypes. To explore the importance of MLL-Fusion Protein regulation by CKS1/2, we used small molecule inhibitors (MLN4924 and C1) to modulate their protein degradation functions. These inhibitors specifically reduced the proliferation of MLLr cell lines compared to primary controls. Altogether, this study uncovers a novel regulatory pathway for MLL1, which may open a new therapeutic approach to MLLr leukaemia.  相似文献   

14.
Invitro phosphorylation and acetylation of nonhistone chromosomal (NHC) proteins and their modulation by Ca++ and estradiol were studied by incubating slices of cerebral cortex of 2-, 15- and 84-week female rats with 32Pi and 14C-Na-acetate. Phosphorylation pattern of NHC proteins is unique for each age. Ca++ and estradiol stimulate phosphorylation of different NHC proteins which is also age-specific. Acetylation of NHC proteins decreases precipitously with age. No unique NHC protein is acetylated preferentially at any age, nor does Ca++ stimulate acetylation. Estradiol, however, stimulates acetylation of a few NHC proteins. It is suggested that phosphorylation of NHC proteins and its modulation by effectors may be more important for gene expression than their acetylation.  相似文献   

15.
Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.  相似文献   

16.
Recombinant protein expression in bacteria, typically E. coli, has been the most successful strategy for milligram quantity expression of proteins. However, prokaryotic hosts are often not as appropriate for expression of human, viral or eukaryotic proteins due to toxicity of the foreign macromolecule, differences in the protein folding machinery, or due to the lack of particular co- or post-translational modifications in bacteria. Expression systems based on yeast (P. pastoris or S. cerevisiae) 1,2, baculovirus-infected insect (S. frugiperda or T. ni) cells 3, and cell-free in vitro translation systems 2,4 have been successfully used to produce mammalian proteins. Intuitively, the best match is to use a mammalian host to ensure the production of recombinant proteins that contain the proper post-translational modifications. A number of mammalian cell lines (Human Embryonic Kidney (HEK) 293, CV-1 cells in Origin carrying the SV40 larget T-antigen (COS), Chinese Hamster Ovary (CHO), and others) have been successfully utilized to overexpress milligram quantities of a number of human proteins 5-9. However, the advantages of using mammalian cells are often countered by higher costs, requirement of specialized laboratory equipment, lower protein yields, and lengthy times to develop stable expression cell lines. Increasing yield and producing proteins faster, while keeping costs low, are major factors for many academic and commercial laboratories.Here, we describe a time- and cost-efficient, two-part procedure for the expression of secreted human proteins from adherent HEK 293T cells. This system is capable of producing microgram to milligram quantities of functional protein for structural, biophysical and biochemical studies. The first part, multiple constructs of the gene of interest are produced in parallel and transiently transfected into adherent HEK 293T cells in small scale. The detection and analysis of recombinant protein secreted into the cell culture medium is performed by western blot analysis using commercially available antibodies directed against a vector-encoded protein purification tag. Subsequently, suitable constructs for large-scale protein production are transiently transfected using polyethyleneimine (PEI) in 10-layer cell factories. Proteins secreted into litre-volumes of conditioned medium are concentrated into manageable amounts using tangential flow filtration, followed by purification by anti-HA affinity chromatography. The utility of this platform is proven by its ability to express milligram quantities of cytokines, cytokine receptors, cell surface receptors, intrinsic restriction factors, and viral glycoproteins. This method was also successfully used in the structural determination of the trimeric ebolavirus glycoprotein 5,10.In conclusion, this platform offers ease of use, speed and scalability while maximizing protein quality and functionality. Moreover, no additional equipment, other than a standard humidified CO2 incubator, is required. This procedure may be rapidly expanded to systems of greater complexity, such as co-expression of protein complexes, antigens and antibodies, production of virus-like particles for vaccines, or production of adenoviruses or lentiviruses for transduction of difficult cell lines.  相似文献   

17.
To confirm whether the head-to-tail circularization could be involved in the stability and activity of the circular bacteriocin AS-48, two permutated linear structural as-48A genes have been constructed by circular permutation. The absence of the leaderless linear AS23/24 and AS48/49 proteins in Escherichia coli, under all the conditions investigated, supports the idea that the circular backbone is important to stabilize their structure and also indicates the significance of a leader peptide. In fact, the approach taken in this study to generate linear permutated proteins fused to an appropriate partner was sufficient to prevent cellular proteolysis. In this case, the high expression levels found favour their intracellular accumulations as inclusion bodies, which after solubilization showed a propensity to aggregate, thus hindering the specific EK cleavage. This could explain the presence of active hybrid tagged proteins identified in this work. The conserved distribution of hydrophobic and hydrophilic surfaces in the hybrid proteins is responsible for the antibacterial activity. In addition, the opening of the AS-48 molecule between the residues G23 W24 connecting the α1/α2 helices, confers greater stability, suggesting that the sequence and/or the free amino acid in the polypeptide chain are critical aspects in the design of new variants.  相似文献   

18.
Compared to thylakoid and inner membrane proteins in cyanobacteria, no structure–function information is available presently for integral outer-membrane proteins (OMPs). The Slr1270 protein from the cyanobacterium Synechocystis 6803, over-expressed in Escherichia coli, was refolded, and characterized for molecular size, secondary structure, and ion-channel function. Refolded Slr1270 displays a single band in native-electrophoresis, has an α-helical content of 50–60%, as in E. coli TolC with which it has significant secondary-structure similarity, and an ion-channel function with a single-channel conductance of 80–200 pS, and a monovalent ion (K+:Cl) selectivity of 4.7:1. The pH-dependence of channel conductance implies a role for carboxylate residues in channel gating, analogous to that in TolC.  相似文献   

19.
The GTPase ADP-ribosylation factor related protein 1 (ARFRP1) controls the recruitment of proteins such as golgin-245 to the trans-Golgi. ARFRP1 is highly expressed in adipose tissues in which the insulin-sensitive glucose transporter GLUT4 is processed through the Golgi to a specialized endosomal compartment, the insulin-responsive storage compartment from which it is translocated to the plasma membrane in response to a stimulation of cells by insulin. In order to examine the role of ARFRP1 for GLUT4 targeting, subcellular distribution of GLUT4 was investigated in adipose tissue specific Arfrp1 knockout (Arfrp1ad−/−) mice. Immunohistochemical and ultrastructural studies of brown adipocytes demonstrated an abnormal trans-Golgi in Arfrp1ad−/− adipocytes. In addition, in Arfrp1ad−/− adipocytes GLUT4 protein accumulated at the plasma membrane rather than being sequestered in an intracellular compartment. A similar missorting of GLUT4 was produced by siRNA-mediated knockdown of Arfrp1 in 3T3-L1 adipocytes which was associated with significantly elevated uptake of deoxyglucose under basal conditions. Thus, Arfrp1 appears to be involved in sorting of GLUT4.  相似文献   

20.
Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural-functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H-13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号