共查询到20条相似文献,搜索用时 0 毫秒
1.
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn
= 1–4) with close structural homology to the PH domain of Bruton''s tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders. 相似文献
2.
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2. 相似文献
3.
Anat Shmueli Ryouhei Tsutsumi Jun Noritake Avi Bar Sivan Sapoznik Yuko Fukata Irit Orr Masaki Fukata Orly Reiner 《The EMBO journal》2010,29(1):107-119
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine‐tuning the activity of the retrograde motor cytoplasmic dynein. 相似文献
4.
Yamada M Toba S Yoshida Y Haratani K Mori D Yano Y Mimori-Kiyosue Y Nakamura T Itoh K Fushiki S Setou M Wynshaw-Boris A Torisawa T Toyoshima YY Hirotsune S 《The EMBO journal》2008,27(19):2471-2483
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data. 相似文献
5.
Sunaina Surana David Villarroel‐Campos Oscar M. Lazo Edoardo Moretto Andrew P. Tosolini Elena R. Rhymes Sandy Richter James N. Sleigh Giampietro Schiavo 《Traffic (Copenhagen, Denmark)》2020,21(1):13-33
Neurons are highly polarized cells that critically depend on long‐range, bidirectional transport between the cell body and synapse for their function. This continual and highly coordinated trafficking process, which takes place via the axon, has fascinated researchers since the early 20th century. Ramon y Cajal first proposed the existence of axonal trafficking of biological material after observing that dissociation of the axon from the cell body led to neuronal degeneration. Since these first indirect observations, the field has come a long way in its understanding of this fundamental process. However, these advances in our knowledge have been aided by breakthroughs in other scientific disciplines, as well as the parallel development of novel tools, techniques and model systems. In this review, we summarize the evolution of tools used to study axonal transport and discuss how their deployment has refined our understanding of this process. We also highlight innovative tools currently being developed and how their addition to the available axonal transport toolkit might help to address key outstanding questions. 相似文献
6.
Mitochondria form a dynamic network responsible for energy production, calcium homeostasis and cell signaling. Appropriate distribution of the mitochondrial network contributes to organelle function and is essential for cell survival. Highly polarized cells, including neurons and budding yeast, are particularly sensitive to defects in mitochondrial movement and have emerged as model systems for studying mechanisms that regulate organelle distribution. Mitochondria in multicellular eukaryotes move along microtubule tracks. Actin, the primary cytoskeletal component used for transport in yeast, has more subtle functions in other organisms. Kinesin, dynein and myosin isoforms drive motor-based movement along cytoskeletal tracks. Milton and syntabulin have recently been identified as potential organelle-specific adaptor molecules for microtubule-based motors. Miro, a conserved GTPase, may function with Milton to regulate transport. In yeast, Mmr1p and Ypt11p, a Rab GTPase, are implicated in myosin V-based mitochondrial movement. These potential adaptors could regulate motor activity and therefore determine individual organelle movements. Anchoring of stationary mitochondria also contributes to organelle retention at specific sites in the cell. Together, movement and anchoring ultimately determine mitochondrial distribution throughout the cell. 相似文献
7.
Feng J. Gao Sachin Hebbar Xu A. Gao Michael Alexander Jai P. Pandey Michael D. Walla William E. Cotham Stephen J. King Deanna S. Smith 《Traffic (Copenhagen, Denmark)》2015,16(9):941-961
Glycogen synthase kinase 3 (GSK‐3) has been linked to regulation of kinesin‐dependent axonal transport in squid and flies, and to indirect regulation of cytoplasmic dynein. We have now found evidence for direct regulation of dynein by mammalian GSK‐3β in both neurons and non‐neuronal cells. GSK‐3β coprecipitates with and phosphorylates mammalian dynein. Phosphorylation of dynein intermediate chain (IC) reduces its interaction with Ndel1, a protein that contributes to dynein force generation. Two conserved residues, S87/T88 in IC‐1B and S88/T89 in IC‐2C, have been identified as GSK‐3 targets by both mass spectrometry and site‐directed mutagenesis. These sites are within an Ndel1‐binding domain, and mutation of both sites alters the interaction of IC's with Ndel1. Dynein motility is stimulated by (i) pharmacological and genetic inhibition of GSK‐3β, (ii) an insulin‐sensitizing agent (rosiglitazone) and (iii) manipulating an insulin response pathway that leads to GSK‐3β inactivation. Thus, our study connects a well‐characterized insulin‐signaling pathway directly to dynein stimulation via GSK‐3 inhibition. 相似文献
8.
Won Hee Jang Young Joo Jeong Sun Hee Choi Sang-Jin Kim Sang-Hwa Urm 《Bioscience, biotechnology, and biochemistry》2013,77(12):2069-2072
Kinesin light chain 1 (KLC1) mediates binding of KIF5 motor to specific cargo. Using the yeast two-hybrid screening, we found that mitochondrial fission protein dynamin-1-like protein (Dnm1L) interacted with KLC1, but not KIF5. Dnm1L and KLC1 were co-localized in cultured cells. These results suggest that KLC1 may play a potential role in post-fission mitochondrial transport. 相似文献
9.
10.
Masami Yamada Shiori Toba Takako Takitoh Yuko Yoshida Daisuke Mori Takeshi Nakamura Atsuko H Iwane Toshio Yanagida Hiroshi Imai Li‐yuan Yu‐Lee Trina Schroer Anthony Wynshaw‐Boris Shinji Hirotsune 《The EMBO journal》2010,29(3):517-531
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1. 相似文献
11.
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal‐specific kinase cyclin‐dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5‐dependent phosphorylation of the dynein regulator Ndel1 is required for proper re‐routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis‐sorting defects. While inhibition of the CDK5‐Ndel1‐Lis1‐dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein‐dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS. 相似文献
12.
A paper by DeGiorgis et al. (DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; DOI: 10.1111/j.1600-0854.2008.00809.x) in this issue of Traffic reports on the identification and function of a second squid kinesin, a kinesin-3 motor. As expected, the newly discovered motor associates with axoplasmic organelles in situ and powers motility along microtubules of vesicles isolated from squid axoplasm. Less expected was the finding that kinesin-3 may be the predominant motor for anterograde organelle movement in the squid axon, which challenges the so far undisputed view that this function is fulfilled by the conventional kinesin, kinesin-1. These novel findings let us wonder what the real function of kinesin-1--the most abundant motor in squid axons--actually is. 相似文献
13.
The nudF gene of the filamentous fungus Aspergillus nidulans acts in the cytoplasmic dynein/dynactin pathway and is required for distribution of nuclei. NUDF protein, the product of the nudF gene, displays 42% sequence identity with the human protein LIS1 required for neuronal migration. Haploinsufficiency of the LIS1 gene causes a malformation of the human brain known as lissencephaly. We screened for multicopy suppressors of a mutation in the nudF gene. The product of the nudE gene isolated in the screen, NUDE, is a homologue of the nuclear distribution protein RO11 of Neurospora crassa. The highly conserved NH(2)-terminal coiled-coil domain of the NUDE protein suffices for protein function when overexpressed. A similar coiled-coil domain is present in several putative human proteins and in the mitotic phosphoprotein 43 (MP43) of X. laevis. NUDF protein interacts with the Aspergillus NUDE coiled-coil in a yeast two-hybrid system, while human LIS1 interacts with the human homologue of the NUDE/RO11 coiled-coil and also the Xenopus MP43 coiled-coil. In addition, NUDF coprecipitates with an epitope-tagged NUDE. The fact that NUDF and LIS1 interact with the same protein domain strengthens the notion that these two proteins are functionally related. 相似文献
14.
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport. 相似文献
15.
Abdullah R. Chaudhary Florian Berger Christopher L. Berger Adam G. Hendricks 《Traffic (Copenhagen, Denmark)》2018,19(2):111-121
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus‐end directed kinesin and minus‐end directed dynein motors. Microtubules are decorated by microtubule‐associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single‐molecule assays indicate that kinesin‐1 is more strongly inhibited than kinesin‐2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin‐1, kinesin‐2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus‐end in a dose‐dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin‐1, kinesin‐2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor‐specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus‐ and minus‐end directed transport. 相似文献
16.
17.
Rowena Angeles Janet Devine Ron Barret Dennis Goebel Elizabeth Blachyl-Dyson Michael Forte Roy McCauley 《Journal of bioenergetics and biomembranes》1999,31(2):143-151
Point mutations at K234 and K236 in the yeast voltage-dependent anionchannel 1 (VDAC1) of the mitochondrial outer membrane have been shown tomarkedly impair the membrane insertion of this protein (Smith etal., 1995; Angeles et al., 1998). Mutants of this type wereexpressed in vivo in a strain of yeast with a disruption in theVDAC1 gene. Expression of the various VDAC1 forms was under the control of aGal1 promoter. Wild-type VDAC1 expression fully complemented the slow growthphenotype caused by the disruption. VDAC1 mutants in which K234 and K236 werereplaced by arginine, glutamate, or glutamine caused a more severe negativeeffect on growth. This effect appeared to be dominant since the mutant VDAC1forms suppressed growth in a yeast strain that retained its VDAC1 gene. Thisapparent dominant negative effect on growth did not seem to be specific forany stage of the cell cycle. However, the growth defect was not lethal as theaffected cells still could accumulate the vital stain, FUN1. Expression of amutant in which K234 had been replaced by glutamate had more serious negativegrowth effects than did a similar mutation at K236. Expression of71-116 VDAC1 complemented the VDAC1 disruption; however, expression ofthe same deletion mutant in which the lysines corresponding to K234 and K236were mutated to glutamate severely impaired growth. These results have shownthat a deficiency of lysine at positions 234 and 236 in VDAC1 causes anonlethal growth defect that is more severe than deletion of 45 amino acidsfrom VDAC1 or disruption of the VDAC1 gene. They also indicate that there is ahierarchy in the importance of these lysines with mutations at K234 being themore serious. 相似文献
18.
19.
Yi Zhang Silvana Allodi David C. Sandeman Barbara S. Beltz 《Developmental neurobiology》2009,69(7):415-436
The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life‐long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein‐binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life‐long growth and maintenance of the crustacean neurogenic niche. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 相似文献
20.
Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 to the cell cortex and kinetochores of mitotic cells, known sites of dynein action. We now find that the COOH-terminal WD repeat region of LIS1 is sufficient for kinetochore targeting. Overexpression of this domain or full-length LIS1 displaces CLIP-170 from this site without affecting dynein and other kinetochore markers. The NH2-terminal self-association domain of LIS1 displaces endogenous LIS1 from the kinetochore, with no effect on CLIP-170, dynein, and dynactin. Displacement of the latter proteins by dynamitin overexpression, however, removes LIS1, suggesting that LIS1 binds to the kinetochore through the motor protein complexes and may interact with them directly. We find that of 12 distinct dynein and dynactin subunits, the dynein heavy and intermediate chains, as well as dynamitin, interact with the WD repeat region of LIS1 in coexpression/coimmunoprecipitation and two-hybrid assays. Within the heavy chain, interactions are with the first AAA repeat, a site strongly implicated in motor function, and the NH2-terminal cargo-binding region. Together, our data suggest a novel role for LIS1 in mediating CLIP-170-dynein interactions and in coordinating dynein cargo-binding and motor activities. 相似文献