首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calligrapha is a New World leaf beetle genus that includes several unisexual species in northeastern North America. Each unisexual species had an independent hybrid origin involving different combinations of bisexual species. However, surprisingly, they all cluster in a single mtDNA clade and with some individuals of their parental species, which are in turn deeply polyphyletic for mtDNA. This pattern is suggestive of a selective sweep which, together with mtDNA taxonomic incongruence and occurrence of unisexuality in Calligrapha, led to hypothesize that Wolbachia might be responsible. I tested this hypothesis studying the correlation between diversity of Wolbachia and well‐established mtDNA lineages in >500 specimens of two bisexual species of Calligrapha and their derived unisexual species. Wolbachia appears highly prevalent (83.4%), and fifteen new supergroup‐A strains of the bacteria are characterized, belonging to three main classes: wCallA, occupying the whole species ranges, and wCallB and wCallC, narrowly parapatric, infecting beetles with highly divergent mtDNAs where they coexist. Most beetles (71.6%) carried double infections of wCallA with another sequence class. Bayesian inference of ancestral character states and association tests between bacterial diversity and the mtDNA genealogy show that each mtDNA lineage of Calligrapha has specific types of infection. Moreover, shifts can be explained by horizontal or vertical transfer from local populations to an expanding lineage and cytoplasmic incompatibility between wCallB and wCallC types, suggesting that the symbionts hitchhike with the host and are not responsible for selective mtDNA sweeps. Lack of evidence for sweeps and the fact that individuals in the unisexual clade are uninfected or infected by the widespread wCallA type indicate that Wolbachia does not induce unisexuality in Calligrapha, although they may manipulate host reproduction through cytoplasmic incompatibility.  相似文献   

2.
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains.  相似文献   

3.
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   

4.
Wolbachia infect a variety of arthropod and nematode hosts, but in arthropods, host phylogenetic relationships are usually poor predictors of strain similarity. This suggests that new infections are often established by horizontal transmission. To gain insight into the factors affecting the probability of horizontal transmission among host species, we ask how host phylogeny, geographical distribution and ecology affect patterns of Wolbachia strain similarity. We used multilocus sequence typing (MLST) to characterize Wolbachia strain similarity among dipteran hosts associated with fleshy mushrooms. Wolbachia Supergroup A was more common than Supergroup B in Diptera, and also more common in mycophagous than non‐mycophagous Diptera. Within Supergroup A, host family within Diptera had no effect on strain similarity, and there was no tendency for Wolbachia strains from sympatric host species to be more similar to one another than to strains from hosts in different biogeographical realms. Supergroup A strains differed between mycophagous and non‐mycophagous Diptera more than expected by chance, suggesting that ecological associations can facilitate horizontal transmission of Wolbachia within mycophagous fly communities. For Supergroup B, there were no significant associations between strain similarity and host phylogeny, biogeography, or ecology. We identified only two cases in which closely related hosts carried closely related Wolbachia strains, evidence that Wolbachia‐host co‐speciation or early introgression can occur but may not be a major contributor to overall strain diversity. Our results suggest that horizontal transmission of Wolbachia can be influenced by host ecology, thus leading to partial restriction of Wolbachia strains or strain groups to particular guilds of insects.  相似文献   

5.

Background  

Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.  相似文献   

6.
Wolbachia bacteria are common endosymbionts of insects, and some strains are known to protect their hosts against RNA viruses and other parasites. This has led to the suggestion that releasing Wolbachia-infected mosquitoes could prevent the transmission of arboviruses and other human parasites. We have identified Wolbachia in Kenyan populations of the yellow fever vector Aedes bromeliae and its relative Aedes metallicus, and in Mansonia uniformis and Mansonia africana, which are vectors of lymphatic filariasis. These Wolbachia strains cluster together on the bacterial phylogeny, and belong to bacterial clades that have recombined with other unrelated strains. These new Wolbachia strains may be affecting disease transmission rates of infected mosquito species, and could be transferred into other mosquito vectors as part of control programs.  相似文献   

7.

Background  

Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps.  相似文献   

8.
Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences. Received: 10 January 2000 / Accepted: 22 February 2000  相似文献   

9.
In a recent Perspective, Gerth et al. (2011) expressed concern over how Wolbachia (Wolbachia pipientis Hertig) infections may affect the success of DNA barcoding efforts in bees. The potential and realized effects of endosymbiont-induced selective sweeps on host mitochondrial DNA diversity have been noted repeatedly – and rightly so – in the literature for some years. However, we are equally concerned with other misconceptions, including (a) presuming that a positive Wolbachia test indicates a stable infection, (b) presuming that Wolbachia-infected hosts cannot be identified with a single-locus barcode, and (c) inferring specific Wolbachia–mtDNA interactions based only on incomplete genotyping of Wolbachia strains. We address these issues in the context of the Gerth et al. (2011) survey of Wolbachia prevalence among the German bee fauna. We also clarify some of the context-dependent strengths and limitations of DNA barcoding when it is used as a research tool by taxonomists and ecologists.  相似文献   

10.
The endosymbiont Wolbachia has been detected in a few parthenogenetic collembolans sampled in Europe and America, including three species of Poduromorpha, two species of Entomobryomorpha, and two species of Neelipleona. Based on 16S rRNA and ftsZ gene sequences, most of the Wolbachia infecting parthenogenetic collembolans were characterized as members of supergroup E and showed concordant phylogeny with their hosts. However, the two neelipleonan symbionts form another unique group, indicating that Wolbachia has infected parthenogenetic collembolans multiple times. In this study, five parthenogenetic collembolan species were identified as hosts of Wolbachia, and four new Wolbachia strains were reported for four collembolan species sampled in China, respectively, including a neelipleonan strain from Megalothorax incertus (wMinc). Our results demonstrated that the Wolbachia multilocus sequence typing (MLST) system is superior to the 16S rRNA + ftsZ approach for phylogenetic analyses of collembolan Wolbachia. The MLST system assigned these Wolbachia of parthenogenetic collembolans to supergroup E as a unique clade, which included wMinc, supporting the monophyletic origin of Wolbachia in parthenogenetic collembolan species. Moreover, our data suggested supergroup E as one of the most divergent lineages in Wolbachia and revealed the discrepancy between the phylogenies of Wolbachia from parthenogenetic collembolans and their hosts, which may result from the high level of genetic divergence between collembolan Wolbachia, in association with the geographic differentiation of their hosts, or the possible horizontal transmission of Wolbachia between different collembolan species.  相似文献   

11.
Wolbachia (Alphaproteobacteria) is an inherited endosymbiont of arthropods and filarial nematodes and was reported to be widespread across insect taxa. While Wolbachia's effects on host biology are not understood from most of these hosts, known Wolbachia‐induced phenotypes cover a spectrum from obligate beneficial mutualism to reproductive manipulations and pathogenicity. Interestingly, data on Wolbachia within the most species‐rich order of arthropods, the Coleoptera (beetles), are scarce. Therefore, we screened 128 species from seven beetle families (Buprestidae, Hydraenidae, Dytiscidae, Hydrophilidae, Gyrinidae, Haliplidae, and Noteridae) for the presence of Wolbachia. Our data show that, contrary to previous estimations, Wolbachia frequencies in beetles (31% overall) are comparable to the ones in other insects. In addition, we used Wolbachia MLST data and host phylogeny to explore the evolutionary history of Wolbachia strains from Hydraenidae, an aquatic lineage of beetles. Our data suggest that Wolbachia from Hydraenidae might be largely host genus specific and that Wolbachia strain phylogeny is not independent to that of its hosts. As this contrasts with most terrestrial Wolbachia–arthropod systems, one potential conclusion is that aquatic lifestyle of hosts may result in Wolbachia distribution patterns distinct from those of terrestrial hosts. Our data thus provide both insights into Wolbachia distribution among beetles in general and a first glimpse of Wolbachia distribution patterns among aquatic host lineages.  相似文献   

12.
Infection by Wolbachia was described previously in eleven species of Anastrepha fruit flies some of which are important pests of fruticulture. One such species is the nominal Anastrepha fraterculus, the South American fruit fly, which actually comprises a complex of cryptic species. The suggestions of using Wolbachia for the control of these pest species, make imperative a more precise characterization of the existing strains of the bacteria. In this study, population samples of the A. fraterculus complex from Brazil, Argentina, Peru, Ecuador, Colombia, Guatemala and Mexico were analyzed for Wolbachia infection. The bacteria were genotyped by the MLST and WSP Typing methodologies. All samples were infected with Wolbachia of supergroup “A”. For each of the five MLST genes, unique as well as already known alleles were detected. Nineteen sequence types for the concatenated sequences of the five MLST genes, and twenty wsp alleles were found in the samples. Host-specific haplotypes, shared strains among distinct hosts, and more than one strain of Wolbachia were found in some population samples. Recombination among the MLST genes and intragenic recombination between wsp haplotypes was rare. Phylogenetic analysis showed a great similarity among the Wolbachia strains in the A. fraterculus complex. However, some strains of Wolbachia are found throughout the Neotropical Region and there are specific strains in determined geographical areas.  相似文献   

13.
We studied the occurrence of Wolbachia in relation to the systematics, ecology, and biology of 40 weevil species from central Europe. Identification of Wolbachia supergroups and phylogeny was performed on the basis of 16S rDNA, ftsZ, wsp, and hcpA sequences. Sixteen species (40%) were infected by Wolbachia. Six of these possess only supergroup A (15% of all studied species, 37.5% of the infected species), and four harbored only supergroup B (10 and 25%, respectively). Six species were infected by both supergroups A and B or their genomes harbored parts of these two supergroups (15 and 37.5%, respectively). No differences between Wolbachia supergroup frequencies were detected. There was almost no correlation between Wolbachia phylogeny and host systematics and phylogeny at the level of subfamily and tribe, because the representatives of both supergroups were detected in all the studied multi‐species tribes. Wolbachia strains were probably inherited from a common ancestor only in the case of the genus Strophosoma, where two of three analyzed species possessed bacteria which are genetically very close in all the studied genes. There was also only limited congruence between phylogenies obtained from the four studied genes. These results suggest horizontal transmission of Wolbachia strains between species and recombination events between different strains. A significant correlation was detected between infected and uninfected species in relation to mobility (flying species were 2× more frequently infected than non‐flying species), foraging (polyphagous species were 2.5× less frequently infected than mono‐ or oligophagous species), and reproductive mode (parthenogenetic weevils were infected nearly 2× as often as bisexuals). No differences were detected between mesophilous and xerothermophilous species, nor between those inhabiting open areas vs. arboreal species. However, these results might have been influenced by common ancestry among the studied weevils. Because weevils include many plant pests of economic importance, it is possible to use these data in developing alternative, biology‐based strategies for controlling them.  相似文献   

14.
Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host–symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host‐controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.  相似文献   

15.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

16.
Although the intracellular bacterium Wolbachia is ubiquitous in insects, it has a unique relationship with New World ants on which particular bacterial strains have specialized. However, data are from distantly related hosts and detailed phylogenetic information which could reveal transmission dynamics are lacking. Here, we investigate host–Wolbachia relationships in the monophyletic fungus‐growing ant tribe Attini, screening 23 species and using multilocus sequence typing to reliably identify Wolbachia strains. This technique reduces the significant problem of recombination seen using traditional single gene techniques. The relationship between Wolbachia and the fungus‐growing ants appears complex and dynamic. There is evidence of co‐cladogenesis, supporting vertical transmission; however, this is incomplete, demonstrating that horizontal transmission has also occurred. Importantly, the infection prevalence is frequently different between closely related taxa, with the Acromyrmex leaf‐cutting ants appearing particularly prone to infection and there being no consistent relationship with any of the major life history transitions. We suggest that infection loss and horizontal transmission have driven epidemics or selective sweeps of Wolbachia, resulting in multiple gains and losses of infection across the fungus‐growing ants.  相似文献   

17.
The endosymbiotic bacterium Wolbachia enhances its spread via vertical transmission by generating reproductive effects in its hosts, most notably cytoplasmic incompatibility (CI). Additionally, frequent interspecific horizontal transfer is evident from a lack of phylogenetic congruence between Wolbachia and its hosts. The mechanisms of this lateral transfer are largely unclear. To identify potential pathways of Wolbachia movements, we performed multilocus sequence typing of Wolbachia strains from bees (Anthophila). Using a host phylogeny and ecological data, we tested various models of horizontal endosymbiont transmission. In general, Wolbachia strains seem to be randomly distributed among bee hosts. Kleptoparasite‐host associations among bees as well as other ecological links could not be supported as sole basis for the spread of Wolbachia. However, cophylogenetic analyses and divergence time estimations suggest that Wolbachia may persist within a host lineage over considerable timescales and that strictly vertical transmission and subsequent random loss of infections across lineages may have had a greater impact on Wolbachia strain distribution than previously estimated. Although general conclusions about Wolbachia movements among arthropod hosts cannot be made, we present a framework by which precise assumptions about shared evolutionary histories of Wolbachia and a host taxon can be modelled and tested.  相似文献   

18.
Endosymbiotic bacteria of the genus Wolbachia are widespread among insects and in many cases cause cytoplasmic incompatibility in crosses between infected males and uninfected females. Such findings have been used to argue that Wolbachia have played an important role in insect speciation. Theoretical models, however, indicate that Wolbachia alone are unlikely to lead to stable reproductive isolation between two formerly conspecific populations. Here we analyze the components of reproductive isolation between Drosophila recens, which is infected with Wolbachia, and its uninfected sister species Drosophila subquinaria. Laboratory pairings demonstrated that gene flow via matings between D. recens females and D. subquinaria males is hindered by behavioral isolation. Matings readily occurred in the reciprocal cross (D. quinaria females × D. recens males), but very few viable progeny were produced. The production of viable hybrids via this route was restored by antibiotic curing of D. recens of their Wolbachia symbionts, indicating that hybrid offspring production is greatly reduced by cytoplasmic incompatibility in the crosses involving infected D. recens males. Thus, behavioral isolation and Wolbachia-induced cytoplasmic incompatibility act as complementary asymmetrical isolating mechanisms between these two species. In accordance with Haldane's rule, hybrid females were fertile, whereas hybrid males invariably were sterile. Levels of mtDNA variation in D. recens are much lower than in either D. subquinaria or D. falleni, neither of which is infected with Wolbachia. The low haplotype diversity in D. recens is likely due to an mtDNA sweep associated with the spread of Wolbachia. Nevertheless, the existence of several mtDNA haplotypes in this species indicates that Wolbachia have been present as a potential isolating mechanism for a substantial period of evolutionary time. Finally, we argue that although Wolbachia by themselves are unlikely to bring about speciation, they can increase the rate of speciation in insects.  相似文献   

19.
The endosymbiotic bacterium Wolbachia is perhaps the greatest panzootic in the history of life on Earth, yet remarkably little is known regarding the factors that determine its incidence across species. One possibility is that Wolbachia more easily invades species with structured populations, due to the increased strength of genetic drift and higher initial frequency of infection. This should enable strains that induce mating incompatibilities to more easily cross the threshold prevalence above which they spread to either fixation or a stable equilibrium infection prevalence. Here, we provide empirical support for this hypothesis by analysing the relationship between female dispersal (as a proxy for population structure) and the incidence of Wolbachia across 250 species of ants. We show that species in which the dispersal of reproductive females is limited are significantly more likely to be infected with Wolbachia than species whose reproductive ecology is consistent with significant dispersal of females, and that this relationship remains after controlling for host phylogeny. We suggest that structured host populations, in this case resulting from limited female dispersal, may be an important feature determining how easily Wolbachia becomes successfully established in a novel host, and thus its occurrence across a wide diversity of invertebrate hosts.  相似文献   

20.
Wolbachia are obligatory intracellular and maternally inherited bacteria, known to infect many species of arthropod. In this study, we discovered a bacteriophage-like genetic element in Wolbachia, which was tentatively named bacteriophage WO. The phylogenetic tree based on phage WO genes of several Wolbachia strains was not congruent with that based on chromosomal genes of the same strains, suggesting that phage WO was active and horizontally transmitted among various Wolbachia strains. All the strains of Wolbachia used in this study were infected with phage WO. Although the phage genome contained genes of diverse origins, the average G+C content and codon usage of these genes were quite similar to those of a chromosomal gene of Wolbachia. These results raised the possibility that phage WO has been associated with Wolbachia for a very long time, conferring some benefit to its hosts. The evolution and possible roles of phage WO in various reproductive alterations of insects caused by Wolbachia are discussed. Received: 28 January 2000 / Accepted: 3 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号