首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The naked core of bacteriophage T4 was isolated ex vivo after cross-linking with either glutaraldehyde or dithiobis(succinimidyl propionate). The isolated particles appeared to be morphologically identical to the cores found in thin sections, to those demonstrated in in situ lysis preparations, and to core structures assembled in vitro. Treatment with glutaraldehyde provided core particles which were morphologically well preserved, whereas dithiobis(succinimidyl propionate)-induced cross-linking was reversible and allowed analysis of the protein composition of the isolated particles. The identity of the reversibly cross-linked particles with those obtained after irreversible cross-linking was suggested by their morphology and their similar sedimentation behavior. Immunolabeling confirmed the structural presence of the main core protein in both structures. Gel electrophoresis of reversibly cross-linked cores revealed the essential head proteins gp22, gp67, and gp21, the three internal proteins IPI, IPII, and IPIII, and a 17K protein.  相似文献   

3.
Gene 22 of bacteriophage T4 encodes a major prohead scaffolding core protein of 269 amino acid residues. From its nucleotide sequence the gene product (gp) 22 has a predicted Mr of 29.9 and a pI of 4.3. The protein is rich in charged residues (glutamic acid and lysine) and contains low amounts of proline and glycine and no cysteine residues. We suggest that gp22 undergoes limited proteolytic processing which eliminates the short C-terminal piece from the molecule during the early steps of prohead assembly. Most amino acid residues of the gp22 polypeptide chain (80%) have an alpha-helical conformation and form seven peculiar alpha-helices. A model suggesting the spatial organization of gp22 is presented. Three long alpha-helices numbered 1 (1A and 1B), 3, and 5 (5A and 5B) are packed in an antiparallel fashion along the major axis of the road-shaped molecule. Two rather short alpha-helices (2 and 4) are located at the distal and proximal ends of the protein molecule, respectively. Helix number 2, which is a proteolytic fragment of gp22 found in mature T4 heads, is packed with helices 1A and 3, similar to a novel element of supersecondary structure, the alpha alpha-corner. Helix number 4 probably interacts with the gp20 connector of the prohead. The implications of the structure of the gp22 molecule for the assembly of the prohead core are discussed.  相似文献   

4.
The role of the bacteriophage T4 gene 32 protein in homologous pairing   总被引:2,自引:0,他引:2  
The gene 32 protein of the bacteriophage T4 is required for efficient genetic recombination in infected Eschericia coli cells and strongly stimulates in vitro pairing catalyzed by the phage uvsX protein, a RecA-like strand transferase. This helix-destabilizing factor is known to bind tightly and cooperatively to single-stranded DNA and to interact specifically with the uvsX protein as well as other phage gene products. However, its detailed role in homologous pairing is not well understood. I show here that when the efficiency of uvsX protein-mediated pairing is examined at different gene 32 protein and duplex DNA concentrations, a correlation between the two is found, suggesting that the two interact in a functionally important manner during the reaction. These and other data are consistent with a model in which the gene 32 protein binds to the strand displaced from the recipient duplex during pairing, thereby stabilizing the heteroduplex product. An alternative model in which the gene 32 protein replaces UvsX on the invading strand, thereby freeing the strand transferase to bind to the displaced strand, is also considered.  相似文献   

5.
The catalytic core of the sunY intron of bacteriophage T4   总被引:4,自引:0,他引:4  
M Q Xu  D A Shub 《Gene》1989,82(1):77-82
  相似文献   

6.
Escherichia coli infected with phage T4 mutants defective in synthesis of the three major internal proteins found in the phage head, IPI-, IPII-, IPIII-, or IP degrees (lacking all three) were examined in the electron microscope for head formation. Infection with IPI- or IPII- does not appear to induce increased aberrant head formation, whereas IPII- or IP degrees infections result in production of polyheads and viable phage. Multiple mutants of the early head formation genes 20, 21, 22, 23, 24, 31, 40 and IP degrees were constructed. Combination with IP degrees increases polyhead formation when head formation is not blocked at a more defective stage but results in a qualitative shift to lump formation in association with gene 22 mutants. Thin-sectioning studies show morphologically similar cores in amber 21 and 21am IP degrees tau particles. These morphological observations, genetic evidence for interaction between ts mutants in gene 22 and the IP mutants, and analysis of the protein composition of tau particles further support the idea that p22 and the internal proteins form an unstable assembly core necessary for an early stage of head formation (M. K. Showe and L. W. Black, 1973).  相似文献   

7.
Lysis protein T of bacteriophage T4   总被引:3,自引:0,他引:3  
Summary Lysis protein T of phage T4 is required to allow the phage's lysozyme to reach the murein layer of the cell envelope and cause lysis. Using fusions of the cloned gene t with that of the Escherichia coli alkaline phosphatase or a fragment of the gene for the outer membrane protein OmpA, it was possible to identify T as an integral protein of the plasma membrane. The protein was present in the membrane as a homooligomer and was active at very low cellular concentrations. Expression of the cloned gene t was lethal without causing gross leakiness of the membrane. The functional equivalent of T in phage is protein S. An amber mutant of gene S can be complemented by gene t, although neither protein R of (the functional equivalent of T4 lysozyme) nor S possess any sequence similarity with their T4 counterparts. The murein-degrading enzymes (including that of phage P22) have in common a relatively small size (molecular masses of ca. 18 000) and a rather basic nature not exhibited by other E. coli cystosolic proteins. The results suggest that T acts as a pore that is specific for this type of enzyme.  相似文献   

8.
9.
Portal proteins are components of large oligomeric dsDNA pumps connecting the icosahedral capsid of tailed bacteriophages to the tail. Prior to the tail attachment, dsDNA is actively pumped through a central cavity formed by the subunits. We have studied the portal protein of bacteriophage P22, which is the largest connector characterized among the tailed bacteriophages. The molecular weight of the monomer is 82.7 kDa, and it spontaneously assembles into an oligomeric structure of approximately 1.0 MDa. Here we present a preliminary biochemical and crystallographic characterization of this large macromolecular complex. The main difficulties related to the crystallization of P22 portal protein lay in the intrinsic dynamic nature of the portal oligomer. Recombinant connectors assembled from portal monomers expressed in Escherichia coli form rings of different stoichiometry in solution, which cannot be separated on the basis of their size. To overcome this intrinsic heterogeneity we devised a biochemical purification that separates different ring populations on the basis of their charge. Small ordered crystals were grown from drops containing a high concentration of the kosmotropic agent tert-butanol and used for data collection. A preliminary crystallographic analysis to 7.0-A resolution revealed that the P22 portal protein crystallized in space group I4 with unit cell dimensions a=b=409.4A, c=260.4A. This unit cell contains a total of eight connectors. Analysis of the noncrystallographic symmetry by the self-rotation function unambiguously confirmed that bacteriophage P22 portal protein is a dodecamer with a periodicity of 30 degrees. The cryo-EM reconstruction of the dodecahedral bacteriophage T3 portal protein will be used as a model to initiate phase extension and structure determination.  相似文献   

10.
The temperate bacteriophages λ and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. λ and P22 Xis proteins are both small proteins (λ Xis, 72 amino acids; P22 Xis, 116 amino acids) and have basic isoelectric points (for P22 Xis, 9.42; for λ Xis, 11.16). However, the P22 Xis and λ Xis primary sequences lack significant similarity at the amino acid level, and the linear organizations of the P22 phage attachment site DNA-binding sites have differences that could be important in quaternary intasome structure. We purified P22 Xis and studied the protein in vitro by means of electrophoretic mobility shift assays and footprinting, cross-linking, gel filtration stoichiometry, and DNA bending assays. We identified one protected site that is bent approximately 137 degrees when bound by P22 Xis. The protein binds cooperatively and at high protein concentrations protects secondary sites that may be important for function. Finally, we aligned the attP arms containing the major Xis binding sites from bacteriophages λ, P22, L5, HP1, and P2 and the conjugative transposon Tn916. The similarity in alignments among the sites suggests that Xis-containing bacteriophage arms may form similar structures.  相似文献   

11.
The shape and size of the bacteriophage T4 head are dependent on genes that determine the scaffolding core and the shell of the prohead. Mutants of the shell proteins affect mainly the head length. Two recently identified genes (genes 67 and 68) and one already known gene (gene 22), whose products are scaffold constituents, have been investigated. Different types of mutants were shown to strongly influence the proportion of aberrantly shaped particles. By model building, these shape variants could be represented as polyhedral bodies derived from icosahedra, through outgrowths along different polyhedral axes. The normal, prolate particle is obtained by elongation along a fivefold axis. The mutations of the three core genes (genes 67, 68, and 22) affect the width mainly by lateral outgrowths of the prolate particle, although small and large isometric particles are also found. Many of the aberrant particles are multitailed, suggesting a correlation between tail attachment sites and shape.  相似文献   

12.
A tryptic core (residues 22 to 253) of the single-stranded DNA binding protein, or gene 32 protein, of bacteriophage T4 has been crystallized in four different crystal forms. One of these forms appears suitable for high-resolution X-ray crystallographic studies. It is triclinic, space group PI, with a = 67.7 A?, b = 67.8 A?, c = 66.0 A?, α = 101.6 °, β = 107.0 °, γ = 105.2 °. There appear to be three protein protomers in a near-rhombohedral packing in the unit cell.  相似文献   

13.
Assembly core of bacteriophage T4: an intermediate in head formation   总被引:31,自引:0,他引:31  
  相似文献   

14.
15.
16.
Formation of the prohead core of bacteriophage T4 in vivo.   总被引:2,自引:4,他引:2       下载免费PDF全文
Formation of the prohead core of bacteriophage T4 was not dependent on shell assembly. In mutant infections, where the production or assembly of active shell protein was not possible, naked core structures were formed. The particles were generally attached to the bacterial inner membrane and possessed defined prolate dimensions. The intracellular yield varied between 15 and 71% of a corresponding prohead yield and was dependent on the temperature of incubation. The products of genes 21 and 22 were found to be essential for in vivo core formation, whereas those of genes 20, 23, 24, 31, and 40, as well as the internal proteins I to III, were dispensable.  相似文献   

17.
Conformational changes in bacteriophage tail proteins after heating and ionic strength alteration leading to dissociation of tail sheath have been studied using protein fluorescence, differential scanning microcalorimetry and electron microscopy methods. Autonomous structural changes in tube-baseplate proteins have been revealed. They take place under the same conditions as those which release the bonds holding the sheath protein subunits to those of the tube in isolated sheathed tails. The conformational changes in the tube-baseplates are reversible similarly to the process of assembly and disassembly of the extended sheath. Morphological changes in the tube have been found at the temperature above the transition registered by protein fluorescence but not by calorimetry. This suggests that revealed spectral alterations reflect changes in quaternary structure of tail tube in particular.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号