首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.  相似文献   

2.
3.
4.
5.
6.
7.
Li X  Zhuo J  Jing Y  Liu X  Wang X 《Journal of plant physiology》2011,168(15):1761-1770
Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs’ role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24 d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance.  相似文献   

8.
9.
Abiotic stresses resulting from water deficit, high salinity or periods of drought adversely affect plant growth and development and represent major selective forces during plant evolution. The raffinose family oligosaccharides (RFOs) are synthesised from sucrose by the subsequent addition of activated galactinol moieties donated by galactinol. RFOs are characterised as compatible solutes involved in stress tolerance defence mechanisms, although evidence also suggests that they act as antioxidants, are part of carbon partitioning strategies and may serve as signals in response to stress. The key enzyme and regulatory point in RFO biosynthesis is galactinol synthase (GolS), and an increase of GolS in expression and activity is often associated with abiotic stress. It has also been shown that different GolS isoforms are expressed in response to different types of abiotic stress, suggesting that the timing and accumulation of RFOs are controlled for each abiotic stress. However, the accumulation of RFOs in response to stress is not universal and other functional roles have been suggested for RFOs, such as being part of a carbon storage mechanism. Transgenic Arabidopsis plants with increased galactinol and raffinose concentrations had better ROS scavenging capacity, while many sugars have been shown in vitro to have antioxidant activity, suggesting that RFOs may also act as antioxidants. The RFO pathway also interacts with other carbohydrate pathways, such as that of O‐methyl inositol (OMI), which shows that the functional relevance of RFOs must not be seen in isolation to overall carbon re‐allocation during stress responses.  相似文献   

10.
复苏植物是研究植物耐脱水机制的特殊模式植物和宝贵的耐旱基因资源植物。以复苏植物旋蒴苣苔(Boea hygrometrica) 为材料研究其在脱水和复水过程中棉子糖系列寡糖含量的变化, 并克隆了旋蒴苣苔棉子糖合酶基因BhRFS。荧光定量PCR检测表明, BhRFS受干旱、低温(4°C)、高盐(200 mmol·L–1NaCl)和ABA(100 μmol·L–1)诱导表达上调, 而高温(37°C)抑制其表达, H2O2(200 μmol·L–1)处理对其没有影响。研究结果表明, BhRFS可能参与了多种非生物逆境胁迫抗性反应, 并受到ABA依赖的信号通路调控。  相似文献   

11.
12.
13.
14.
15.
16.
Raffinose (sucrosylgalactoside oligosaccharide) is a water soluble carbohydrate and accumulates in response to abiotic stresses in plants. Plant raffinose synthases are poorly characterized, and the genes involved in raffinose biosynthesis are unknown in sugar beet. Here, we report the isolation of two genes encoding raffinose synthase (BvRS1 and BvRS2) as well as a gene encoding galactinol synthase (BvGolS1) from sugar beet. BvRS1 and BvRS2 show high homologies to Arabidopsis raffinose synthase AtRS5. BvRS1 and BvGolS1 were expressed in Escherichia coli. Crude extracts showed the activities of raffinose synthase and galactinol synthase. The K m values of BvRS1 for galactinol and sucrose and the K m values of BvGolS1 for UDP-galactose and myo-inositol were determined. The expression levels of BvRS1 were significantly higher than that of BvRS2. The mRNA for BvRS1 was rapidly induced by cold stress whereas the mRNA for BvRS2 was slowly induced by cold and salt stresses. These data suggest that BvRS1 and BvRS2 encode raffinose synthase genes responsible to cold and salt stress, respectively.  相似文献   

17.
Unimbibed Amaranthus caudatus seeds were found to contain stachyose, raffinose, verbascose, sucrose, galactinol, myo-inositol, glucose and fructose, while no galactose, maltose and maltotriose was detected. During imbibition, seed concentrations of verbascose, stachyose, raffinose, galactinol, myo-inositol (temporary) and fructose (transient) were observed to decrease; concentrations of galactose and maltose remained fairly constant, while those of sucrose, glucose and maltotriose increased, the increase in sucrose concentration was only temporary. Effects of gibberellin A3 (GA3) at 3 × 10−4 M and ethephon at 3 × 10−4 M alone or in the presence of methyl jasmonate (Me-JA) at 10−3 M on concentrations of soluble sugars during germination of A. caudatus seeds were examined. Me-JA was found to inhibit seed germination and fresh weight of the seeds, but did not affect sucrose, myo-inositol, galactose and maltose concentrations during imbibition for up to 20 h. The exogenously applied GA3 was observed to enhance germination, stachyose breakdown and glucose concentration after 20 h of incubation. Ethephon stimulated seed germination as well as utilisation of stachyose, galactinol (both after 14 and 20 h) and raffinose (after 14 h of incubation). Although the stimulatory effect of either GA3 or ethephon on seed germination was blocked by Me-JA; these stimulators increased mobilisation of raffinose and stachyose, but only ethephon enhanced both glucose and fructose after 14 and/or 20 h of incubation in the presence of Me-JA. The maltose concentration was increased by both GA3 and ethephon alone and in the presence of Me-JA. Of the growth regulators studied, ethephon alone and/or in combination with Me-JA significantly increased the concentrations of glucose, fructose, galactose, maltose and maltotriose. The differences in sugar metabolism appear to be linked to ethylene or GA3 applied simultaneously with Me-JA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号