首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper mainly studied the effects of ultraviolet‐B (UV‐B) radiation, nitrogen, and their combination on photosynthesis and antioxidant defenses of Picea asperata seedlings. The experimental design included two levels of UV‐B treatments (ambient UV‐B, 11.02 KJ m−2 day−1; enhanced UV‐B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g m−2 a−1 N) – to determine whether the adverse effects of UV‐B are eased by supplemental nitrogen. Enhanced UV‐B significantly inhibited plant growth, net photosynthetic rate (A), stomatal conductance to water vapor (Gs), transpiration rate and photosynthetic pigment, and increased intercellular CO2 concentration, UV‐B absorbing compounds, proline content, malondialdehyde (MDA) content, and activity of antioxidant enzymes (peroxidase (POD), superoxide dimutase, and glutathione reductase). Enhanced UV‐B also reduced needle DW and increased hydrogen peroxide (H2O2) content and the rate of superoxide radical (O2) production only under supplemental nitrogen. On the other hand, supplemental nitrogen increased plant growth, A, Gs, chlorophyll content and activity of antioxidant enzymes (POD, ascorbate peroxidase, and catalase), and reduced MDA content, H2O2 content, and the rate of O2 production only under ambient UV‐B, whereas supplemental nitrogen reduced activity of antioxidant enzymes under enhanced UV‐B. Carotenoids content, proline content, and UV‐B absorbing compounds increased under supplemental nitrogen. Moreover, significant UV‐B × nitrogen interaction was found on plant height, basal diameter, A, chlorophyll a, activity of antioxidant enzymes, H2O2, MDA, and proline content. These results implied that supplemental nitrogen was favorable for photosynthesis and antioxidant defenses of P.asperata seedlings under ambient UV‐B. However, supplemental nitrogen made the plants more sensitive to enhanced UV‐B, although some antioxidant indexes increased.  相似文献   

2.
  • Supplemental (s)‐UV‐B radiation has adverse effects on the majority of plants. The present study was conducted to evaluate the effects of exogenous application of the growth hormone indole acetic acid (IAA) on various morphological, physiological and biochemical characteristics of Withania somnifera, an indigenous medicinal plant, subjected to s‐UV‐B.
  • The s‐UV‐B‐treated plants received ambient + 3.6 kJm?2·day?1 biologically effective UV‐B, and IAA was applied at two doses (200 and 400 ppm) to s‐UV‐B‐exposed plants.
  • The plant was forced to compromise its growth, development and photosynthetic patterns to survive under s‐UV‐B by increasing concentrations of secondary metabolites and antioxidants (thiol, proline, ascorbic acid, α‐tocopherol, ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, superoxide dismutase) to counteract oxidative stress. Increases in secondary metabolites were evidenced as increased activity of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, 4‐coumarate CoA ligase, chalcone isomerase and dihydroflavonol reductase. Application of different IAA doses reversed the detrimental effects of s‐UV‐B on W. somnifera by improving growth and photosynthesis and reducing concentrations of secondary metabolites and non‐enzymatic antioxidants. Antioxidant enzymes, however, had a synergistic effect on s‐UV‐B treatment and IAA application.
  • The effects of s‐UV‐B on W. somnifera are ameliorated to varying degrees upon exogenous IAA application, and synergistic enhancement of antioxidant enzymes under s‐UV‐B+IAA treatment might be responsible for the partial recuperation of growth and plant protein content, as a UV‐B‐exposed plant is forced to allocate most of its photosynthate towards production of enzymes related to antioxidant defence.
  相似文献   

3.
UV‐induced synthesis/accumulation of photoprotective pigments and antioxidant activity were investigated in the hot‐spring cyanobacterium Leptolyngbya cf. fragilis. The results indicated that UV radiation may induce biosynthesis of carotenoids, allophycocyanin, phycoerythrin, and scytonemin while phycocyanin degrades in response to longtime UV radiation. Moreover, pigment composition of L. cf. fragilis was significantly altered with increasing UV radiation times, probably due to destruction and resynthesis of accessory pigments as an adaptation strategy to UV stress. The in vitro antioxidant analysis of different extracts of UV treated cyanobacteria exhibited concentration‐dependent antioxidant activity. Ethyl acetate extract of 72 h UV treatment showed maximum total antioxidant activity (IC50 = 71.73 ± 5.3 μg mL?1) followed by ethyl acetate control (non‐UV irradiated) extract (IC50 = 109.43 ± 2.76 μg mL?1). This is the first report for the UV‐induced synthesis of photoprotective pigments and their antioxidant activity in L. cf. fragilis.  相似文献   

4.
The impact of ambient ultraviolet (UV)‐B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV‐B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near‐ambient UV, while the relative proportions of photoprotective carotenoids, especially β‐carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV‐B‐absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV‐B‐absorbing pigments which should offer better protection under ambient UV‐B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV‐B radiation.  相似文献   

5.
A study was made of the effects of solar ultraviolet‐B radiation (UV‐B) on the growth of the dominant plant species of a shrub‐dominated ecosystem in Tierra del Fuego. This part of southern Argentina can be under the direct influence of the Antarctic ‘ozone hole’ during the austral spring and lingering ozone‐depleted air during the summer. The plant community is dominated by an evergreen shrub (Chiliotrichum diffusum) with an herbaceous layer of Gunnera magellanica and Blechnum penna‐marina in the interspaces between the shrubs. Inspections of ozone trends indicate that the springtime and summertime ozone column over Tierra del Fuego has decreased by 10–13% from 1978/9 to 1998/9. In a set of well‐replicated field plots, solar UV‐B was reduced to approximately 15–20% of the ambient UV‐B using plastic films. Polyester films were used to attenuate UV‐B radiation and UV‐transparent films (~90% UV‐B transmission) were used as control. Treatments were imposed during the growing season beginning in 1996 and continued for three complete growing seasons. Stem elongation of the shrub C. diffusum was not affected by UV‐B attenuation in any of the three seasons studied. However, frond length of B. penna‐marina under attenuated UV‐B was significantly greater than that under near‐ambient UV‐B in all three seasons. Attenuation of solar UV‐B also promoted the expansion of G. magellanica leaves in two of the growing seasons. Differences between treatments in leaf or frond length in B. penna‐marina and G. magellanica did not exceed 12%. Another significant effect of UV‐B attenuation was a promotion of insect herbivory in G. magellanica, with a 25–75% increase in the leaf area consumed. Changes in plant phenology or relative species cover were not detected within the time frame of this study. The results suggest that the increase in UV‐B radiation associated with the erosion of the ozone layer might be affecting the functioning of this ecosystem to some degree, particularly by inhibiting the growth of some plant species and by altering plant–insect interactions.  相似文献   

6.
Cyanobacteria that form the primary components of microbial mats in freshwater bogs and intertidal marine environments in the Bahamas produce water-soluble brown pigments whose spectral properties imply that they are a type of humic acid. These “humic pigments” are produced by vital processes of living cyanobacteria, not by decomposition of dead ones, as shown by decreases in the concentrations of humic pigments, ultraviolet (UV) radiation-absorbing photoprotective mycosporine-like amino acids (MAAs), and chlorophyll from upper to lower layers of the mats, and by the occurrence of humic pigments in cyanobacterial cultures. Unlike MAAs, which absorb UV radiation only within limited ranges of wavelengths, humic pigments absorb radiation spanning the entire UV spectrum, and absorbance increases with decreasing wavelength. These observations suggest that the biosynthesis of humic pigments originated as a photoprotective adaptation in the early Precambrian, enabling cyanobacteria to colonize shallow-water and terrestrial environments even though the atmosphere was virtually devoid of O2 and O3 and therefore transparent to all solar radiation in the UV region of the spectrum. Moreover, the evolution of this photoprotective mechanism may have been linked to the evolution of photosynthesis.  相似文献   

7.
Previous studies have indicated that Populus cathayana Rehder females are more sensitive and less tolerant to stressful environments than males, but it is still unknown whether there are sexual differences in defensive and protective traits under high UV‐B (HUVB) radiation and low soil nutrient status. In this study, P. cathayana was employed as a model species to investigate sex‐related physiological and biochemical responses to UV‐B radiation under different soil nutrient conditions. Cuttings were exposed to two UV‐B radiation regimes (ambient UV‐B radiation and decreased UV‐B radiation) under two soil nutrient status (topsoil and deep soil) for 100 days over one growing season. Both HUVB radiation and low soil nutrient status induced greater decreases in plant growth, dry mass accumulation, gas exchange and leaf nitrogen use efficiency in females than in males, and greater increases in lipid peroxide and antioxidant enzyme activities, and secondary defense capacities in males than in females. Moreover, sexually different responses happened also in organelle ultrastructure. Our results showed that: (1) females suffered greater negative effects and exhibited lower defense capacities than did males under HUVB radiation, low soil nutrient status and their combination; (2) low soil nutrient status reduced plant's sensitivity to HUVB radiation by increasing allocation to defense and decreasing allocation to growth compared with high soil nutrient status. These results provide evidence that sexually different tradeoffs happen between growth and defense in P. cathayana under HUVB radiation and low soil nutrient status.  相似文献   

8.
We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane β -sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.  相似文献   

9.
The present study was carried out to examine the effects of seed soaking in 1 mM ascorbic acid (AA) or 1 mM proline on the growth, content of photosynthetic pigments and proline, relative water content, electrolyte leakage, antioxidant enzymes and leaf anatomy of Hordeum vulgare L. Giza 124 seedlings grown in greenhouse under 100 or 200 mM NaCl. The plants exposed to the NaCl stress exhibited a significant reduction in growth, relative water content, leaf photosynthetic pigments, soluble sugars, as well as alterations in leaf anatomy. However, the treatment with AA or proline ameliorated the stress generated by NaCl and improved the above mentioned parameters. NaCl increased electrolyte leakage, proline content, and activities of antioxidant enzymes (SOD, CAT, and POX). The antioxidant enzymes and leaf anatomy exhibited considerable changes in response to AA or proline application in the absence or presence of NaCl.  相似文献   

10.
A process‐based model integrating the effects of UV‐B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV‐B radiation‐induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV‐B radiation‐induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV‐B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine‐pyrimidone (6‐4) photoproducts (6‐4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV‐B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV‐B radiation levels are more detrimental than short, high doses of UV‐B radiation. The combination of low temperature and increased UV‐B radiation was more significant in the level of UV‐B radiation‐induced damage than UV‐B radiation alone. Slow‐growing leaves were more affected by increased UV‐B radiation than fast‐growing leaves.  相似文献   

11.
Excessive exposure to solar ultraviolet radiation is an essential etiological factor for skin cancer. UV radiation, directly or indirectly through the generation of reactive oxygen species (ROS), causes damage to DNA, proteins and lipids, and induces inflammation and immunosuppression. Cutaneous pigmentation afforded by melanocytes is the main photoprotective mechanism in human skin. In response to UV, melanocytes produce melanin pigments and transfer them to adjacent keratinocytes. This review describes: (i) the photoprotective action of melanin; (ii) the regulation of UV-induced melanogenesis and the role of p53 in this process; (iii) the relation between melanogenic and antioxidant activities in melanocytes. The possible involvement of UV-induced ROS in the stimulation of melanin synthesis is also discussed.  相似文献   

12.
Solar UV‐B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV‐B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense‐related responses in undamaged and Anticarsia gemmatalis larvae‐damaged leaves of two soybean cultivars grown under attenuated or full solar UV‐B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV‐B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane‐carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field‐grown soybean isoflavonoids were regulated by both herbivory and solar UV‐B inducible ET, whereas flavonols were regulated by solar UV‐B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV‐B‐mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone.  相似文献   

13.
Better understanding of crop responses to projected changes in climate is an important requirement. An experiment was conducted in sunlit, controlled environment chambers known as soil–plant–atmosphere–research units to determine the interactive effects of atmospheric carbon dioxide concentration [CO2] and ultraviolet‐B (UV‐B) radiation on cotton (Gossypium hirsutum L.) growth, development and leaf photosynthetic characteristics. Six treatments were used, comprising two levels of [CO2] (360 and 720 µmol mol?1) and three levels of 0 (control), 7.7 and 15.1 kJ m?2 d?1 biologically effective UV‐B radiations within each CO2 level. Treatments were imposed for 66 d from emergence until 3 weeks after the first flower stage. Plants grown in elevated [CO2] had greater leaf area and higher leaf photosynthesis, non‐structural carbohydrates, and total biomass than plants in ambient [CO2]. Neither dry matter partitioning among plant organs nor pigment concentrations was affected by elevated [CO2]. On the other hand, high UV‐B (15.1 kJ m?2 d?1) radiation treatment altered growth resulting in shorter stem and branch lengths and smaller leaf area. Shorter plants at high UV‐B radiation were related to internode lengths rather than the number of mainstem nodes. Fruit dry matter accumulation was most sensitive to UV‐B radiation due to fruit abscission. Even under 7.7 kJ m?2 d?1 of UV‐B radiation, fruit dry weight was significantly lower than the control although total biomass and leaf photosynthesis did not differ from the control. The UV‐B radiation of 15.1 kJ m?2 d?1 reduced both total (43%) and fruit (88%) dry weights due to smaller leaf area and lower leaf net photosynthesis. Elevated [CO2] did not ameliorate the adverse effects of UV‐B radiation on cotton growth and physiology, particularly the boll retention under UV‐B stress.  相似文献   

14.
The effects of ultraviolet (UV) radiation on the photosynthetic and UV‐screening pigments in needles of Scots pine (Pinus sylvestris L.) saplings were studied in a UV‐exclusion field chamber experiment in northern Finland (67°N) during 2001–2002. The chambers held filters that excluded both UVB and UVA, only UVB, transmitted all UV, or lacked filters. Analyses of control needles (no filter and polyethene filter) showed that the first changes to occur in spring (end of April) was an abrupt increase in the epoxidation state (EPS) of the xanthophyll cycle pigments, likely in relation with the beginning of the photosynthetic activity. The concentration of chlorophyll, lutein, neoxanthin, α‐carotene, β‐carotene, and the size of the xanthophyll cycle pool (violaxanthin+antheraxanthin+zeaxanthin=VAZ) changed only later when needles reached their summer photosynthesis state. Exclusion of UV radiation significantly affected the xanthophyll cycle but not the other photosynthetic pigments analysed. Interestingly, the effects on xanthophylls were dependent on the sampling date. Under UVA/B‐exclusion, the EPS was increased and VAZ pool size was unchanged in April, whereas EPS remained unchanged and the VAZ pool size was reduced in May and June. The existence of two sustained and active antenna modes during winter and summer could be an explanation for the specific UV‐exclusion effect in the different season. A high‐performance liquid chromatography analysis of soluble phenolics showed that the exclusion of UVA/B radiation caused a significant effect on five compounds out of 46 studied, without affecting the concentration of the total soluble phenolics. Under UVA/B‐exclusion, the concentration of three of them (secoisolariciresinol‐glucopyranoside, two unknown) was reduced while the concentration of dicoumaroyl‐astragalin and pinosylvin monomethylether was increased compared with both controls separately. In general, the exclusion of UVA/B caused a stronger effect than the exclusion of UVB on both photosynthetic and UV screening pigments. The effects of UV radiation on xanthophyll cycle pigments were season‐specific and detectable only under stressful spring conditions (freezing temperatures and high irradiance due to snow reflection). The effect on the xanthophyll cycle could be a direct consequence of UV treatments, or an indirect consequence of the changed flavonoid composition, or a combination of both.  相似文献   

15.
We examined the influence of solar ultraviolet‐B radiation (UV‐B; 280–315 nm) on the growth of Colobanthus quitensis plants by placing them under contrasting UV‐B filters at Palmer Station, along the Antarctic Peninsula. The filters reduced diurnal biologically effective UV‐B (UV‐BBE) either by 83% (‘reduced UV‐B’) or by 12% (‘near‐ambient UV‐B’) over the 63 day experiment (7 November 1998–8 January 1999). Ozone column depletion averaged 17% during the experiment. Relative growth and net assimilation rates of plants exposed to near‐ambient UV‐B were 30 and 20% lower, respectively, than those of plants exposed to reduced UV‐B. The former plants produced 29% less total biomass, as a result of containing 54% less aboveground biomass. These reductions in aboveground biomass were mainly the result of a 45% reduction in shoot biomass, and a 31% reduction in reproductive biomass. Reductions in shoot biomass were owing to an 18% reduction in branch production by main shoots, while reductions in reproductive biomass were the result of a 19% reduction in individual capsule mass. Total plant leaf area was reduced by 19% under near‐ambient UV‐B, although total leaf biomass was unaffected because leaves had a greater specific leaf mass. The reduction in plant leaf area under near‐ambient UV‐B was attributable to: (1) production of 11% fewer leaves per main shoot system and plant, which resulted from an 18% reduction in branch production by main shoots. Leaf production per individual main shoot or branch was not affected; (2) shorter leaf longevity—main shoots contained 14% fewer green leaves at a given time; and (3) smaller individual leaves—leaf elongation rates were 14% slower and mature leaves were 13% shorter.  相似文献   

16.
Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe‐PAM fluorometer to test the utility of this technique as a means of non‐intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled‐environmental conditions, F(UV‐B)/F(BG) was negatively correlated with whole‐leaf UV‐B‐absorbing pigment concentrations. Fluorescence ratios of V. faba were similar to, and positively correlated with (r2=0.77 [UV‐B]; 0.85 [UV‐A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field‐grown Glycine max exposed to near‐ambient solar UV‐B at a mid‐latitude site (Buenos Aires, Argentina, 34° S) showed significantly lower abaxial F(UV‐B)/F(BG) values (i.e., lower UV‐B epidermal transmittance) than those exposed to attenuated UV‐B, but solar UV‐B reduction had a minimal effect on F(UV‐B)/F(BG) in plants growing at a high‐latitude site (Tierra del Fuego, Argentina, 55° S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV‐B)/F(BG) when exposed to very high supplemental UV‐B (biologically effective UV‐B=14–15 kJ m?2 day?1) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV‐B)/F(BG) relative to those receiving ambient UV‐B. These anomalous fluorescence changes were associated with increases in BG‐absorbing pigments (anthocyanins), but not UV‐B‐absorbing pigments. These results indicate that non‐invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV‐B radiation under both field and laboratory conditions. However, this technique may be of limited utility in cold environments where UV and low temperatures can stimulate the production of BG‐absorbing pigments that interfere with these indirect measurements of UV‐transmittance.  相似文献   

17.
The effects of long‐term elevated UV‐B radiation on silver birch (Betula pendula Roth) seedlings were studied over three growing seasons in an outdoor experiment in Finland started 64 days after germination. One group of seedlings was exposed to a constant 50% increase in UV‐BCIE radiation, which corresponds to 20–25% of ozone depletion; another group received a small increase in UV‐A radiation and a third (the control group) received ambient solar radiation. Changes in growth appeared during the third growing season; the stems of the UV‐B treated seedlings were thinner and their height tended to be shorter compared with that of the control seedlings. In contrast, there were no UV‐B effects on biomass, bud burst, bud dry weights, leaf area, rust frequency index or chlorophyll concentrations in any of the summers. During the three‐year study, the flavonols were significantly increased by the elevated UV‐B only in the first growing season. The responses varied greatly among individual compounds; the most induced were the quercetin glycosides, while the main flavonols, myricetins, were reduced by the UV‐A control treatment. In the second summer phenolic acids, such as 3,4′‐dihydroxypropiophenone‐3‐glucoside, neochlorogenic acid and 5‐coumarylquinic acid, were increased by the UV‐B treatment. In the third year, the constitutive concentrations of phenolics were not affected by the UV‐B treatment.  相似文献   

18.
The natural variation in quantity and quality of light modifies plant morphology, growth rate and concentration of biochemicals. The aim of two growth‐room experiments was to study the combined effects of red (R) and far‐red (FR) light and ultraviolet‐B (UV‐B) radiation on the concentrations of leaf phenolics and growth and morphology of silver birch (Betula pendula Roth) seedlings. Analysis by high‐performance liquid chromatography showed that the leaves exposed to supplemental FR relative to R contained higher concentrations of total chlorogenic acids and a cinnamic acid derivative than the leaves treated with supplemental R relative to FR. In contrast, concentration of a flavonoid, quercetin 3‐galactoside, was higher in the R + UV‐B leaves than in the FR + UV‐B leaves. The UV‐B induced production of kaempferols, chlorogenic acids and most quercetins were not modified by the R : FR ratio. Growth measurements showed that the leaf petioles and stems of FR seedlings were clearly longer than those of R seedlings, but leaf area was reduced by UV‐B radiation. Results of these experiments show that exposure of silver birch seedlings to supplemental FR compared to R leads to fast elongation growth and accumulation of phenolic acids in the leaves.  相似文献   

19.
Ginkgo biloba is an attractive and traditional medicinal plant, and has been widely used as a phytomedicine in the prevention and treatment of cardiovascular and cerebrovascular diseases. Flavonoids and terpene lactones are the major bioactive components of Ginkgo, whereas the ginkgolic acids (GAs) with strong allergenic properties are strictly controlled. In this study, we tested the content of flavonoids and GAs under ultraviolet‐B (UV‐B) treatment and performed comparative proteomic analyses to determine the differential proteins that occur upon UV‐B radiation. That might play a crucial role in producing flavonoids and GAs. Our phytochemical analyses demonstrated that UV‐B irradiation significantly increased the content of active flavonoids, and decreased the content of toxic GAs. We conducted comparative proteomic analysis of both whole leaf and chloroplasts proteins. In total, 27 differential proteins in the whole leaf and 43 differential proteins in the chloroplast were positively identified and functionally annotated. The proteomic data suggested that enhanced UV‐B radiation exposure activated antioxidants and stress‐responsive proteins as well as reduced the rate of photosynthesis. We demonstrate that UV‐B irradiation pharmaceutically improved the metabolic ingredients of Ginkgo, particularly in terms of reducing GAs. With high UV absorption properties, and antioxidant activities, the flavonoids were likely highly induced as protective molecules following UV‐B irradiation.  相似文献   

20.
The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号