首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next‐generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large‐scale changes in the steppe‐tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south‐western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex demographical history, which could have had bottom‐up effects in the Late Pleistocene steppe‐tundra ecosystem.  相似文献   

2.
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today.  相似文献   

3.
Quaternary glacial cycles have shaped the geographic distributions and evolution of numerous species in the Arctic. Ancient DNA suggests that the Arctic fox went extinct in Europe at the end of the Pleistocene and that Scandinavia was subsequently recolonized from Siberia, indicating inability to track its habitat through space as climate changed. Using ecological niche modeling, we found that climatically suitable conditions for Arctic fox were found in Scandinavia both during the last glacial maximum (LGM) and the mid‐Holocene. Our results are supported by fossil occurrences from the last glacial. Furthermore, the model projection for the LGM, validated with fossil records, suggested an approximate distance of 2000 km between suitable Arctic conditions and the Tibetan Plateau well within the dispersal distance of the species, supporting the recently proposed hypothesis of range expansion from an origin on the Tibetan Plateau to the rest of Eurasia. The fact that the Arctic fox disappeared from Scandinavia despite suitable conditions suggests that extant populations may be more sensitive to climate change than previously thought.  相似文献   

4.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

5.
Aim In addition to the traditionally recognized Last Glacial Maximum (LGM, 21 ka) refuge areas in the Mediterranean region, more northerly LGM distributions for temperate and boreal taxa in central and eastern Europe are increasingly being discussed based on palaeoecological and phylogeographical evidence. Our aim was to investigate the potential refuge locations using species distribution modelling to estimate the geographical distribution of suitable climatic conditions for selected rodent species during the LGM. Location Eurasia. Methods Presence/absence data for seven rodent species with range limits corresponding to the limits of temperate or boreal forest or arctic tundra were used in the analysis. We developed predictive distribution models based on the species present‐day European distributions and validated these against their present‐day Siberian ranges. The models with the best predictors of the species distributions across Siberia were projected onto LGM climate simulations to assess the distribution of climatically suitable areas. Results The best distribution models provided good predictions of the present‐day Siberian ranges of the study species. Their LGM projections showed that areas with a suitable LGM climate for the three temperate species (Apodemus flavicollis, Apodemus sylvaticus and Microtus arvalis) were largely restricted to the traditionally recognized southern refuge areas, i.e. mainly in the Mediterranean region, but also southernmost France and southern parts of the Russian Plain. In contrast, suitable climatic conditions for the two boreal species (Clethrionomys glareous and Microtus agrestis) were predicted as far north as southern England and across southern parts of central and eastern Europe eastwards into the Russian Plain. For the two arctic species (Lemmus lemmus and Microtus oeconomus), suitable climate was predicted from the Atlantic coast eastward across central Europe and into Russia. Main conclusions Our results support the idea of more northerly refuge areas in Europe, indicating that boreal species would have found suitable living conditions over much of southern central and eastern Europe and the Russian Plain. Temperate species would have primarily found suitable conditions in the traditional southern refuge areas, but interestingly also in much of the southern Russian Plain.  相似文献   

6.
Glacial refugia of mammals in Europe: evidence from fossil records   总被引:6,自引:1,他引:5  
  • 1 Glacial refugia were core areas for the survival of temperate species during unfavourable environmental conditions and were the sources of postglacial recolonizations. Unfortunately, the locations of glacial refugia of animals and plants are usually described by models, without reference to facts about real geographical ranges at that time.
  • 2 Careful consideration of the faunal assemblages of archaeological sites from the Younger Palaeolithic, which are precisely dated to the Last Glacial Maximum (LGM), gives indications about the distribution of species during the LGM (23 000–16 000 bp ) and provides evidence for the locations of glacial refugia for mammalian species in Europe.
  • 3 In Europe, 47 LGM sites, dating from 23 000 to 16 000 bp and containing typical temperate mammal species, have been described. The geographical range of these archaeological sites clearly shows a distribution which differs from the hypothesized traditional refuge areas of the temperate fauna. A considerable number of sites situated in the Dordogne in south‐western France and the Carpathian region contain records of red deer Cervus elaphus, roe deer Capreolus capreolus, wild boar Sus scrofa and red fox Vulpes vulpes.
  • 4 The faunal composition of the majority of the evaluated Palaeolithic sites in the southern European peninsulas (with the exception of Greece), as well as France and the Carpathian region, indicates the co‐occurrence of these temperate species with cold‐adapted faunal elements such as mammoth Mammuthus primigenius and/or reindeer Rangifer tarandus.
  • 5 The survival of species in Central European refugia would have significant consequences for phylogeography and would be revealed by the dominant distribution of haplotypes, originating from this region. A Carpathian refuge could also be the reason for the very early records of small mammals or mustelids from the Late‐Glacial or Interstadials before the LGM in regions like southern Germany.
  相似文献   

7.
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of Fdistichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of Fdistichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of Fdistichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between Fdistichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.  相似文献   

8.

Background  

At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms.  相似文献   

9.
Aim We discuss the hypotheses proposed by Kullman [Geo‐Öko 21 (2000) 141; Nordic Journal of Botany 21 (2001) 39; Journal of Biogeography 29 (2002) 1117] on the basis of radiocarbon‐dated megafossils of late‐glacial age from the central Swedish mountains that boreal trees survived the glaciation along the south‐west coast of Norway and subsequently migrated eastward early in the late‐glacial to early deglaciated parts of the central Swedish Scandes mountains. Methods We assess these hypotheses on the basis of glacial geological evidence and four lines of palaeoecological evidence, namely macrofossil records of the tree species, vegetation and climate reconstructions from plant evidence, independent climate reconstructions from other proxies for the late‐glacial environment of south‐west Norway, and the patterns of post‐glacial spread of the tree species. Location South and west Norway, central Swedish Scandes mountains (Jämtland). Results and conclusions South‐west Norway and the adjacent continental shelf were under ice at the last‐glacial maximum (LGM). The late‐glacial vegetation of south‐west Norway was treeless and summer temperatures were below the thermal limits for Betula pubescens Ehrh., Pinus sylvestris L. and Picea abies (L.) Karst. Instead of spreading immediately after the onset of Holocene warming, as might have been expected if local populations were surviving, B. pubescens showed a lag of local arrival of 600 to > 1000 years, Pinus lagged by 1500 to > 2000 years, and Picea only reached southern Norway c. 1500 years ago and has not colonized most of south‐west Norway west of the watershed. Glacial geological evidence shows the presence of an ice sheet in the Scandes at the LGM and in the Younger Dryas, which was cold‐based near or at the area where the late‐glacial‐dated megafossils were recovered by Kullman. We conclude that the samples dated by Kullman (2002) should be evaluated carefully for possible sources of contamination. All the available evidence shows that the biogeographical hypotheses, based on these radiocarbon dates taken at face value, of late‐glacial tree survival at the Norwegian coast and subsequent eastwards spread to the mountains, are unsupportable.  相似文献   

10.
Aim Palaeoenvironmental records of Pleistocene glaciation and associated vegetation changes in Patagonia have led to the hypothesis that during the last glacial maximum (LGM) tree species survived locally in favourable habitats. If present populations originated from spread from only one refugium, such as an ice‐free area of coastal Chile (Single Refugium hypothesis), we would expect that eastern populations would be genetically depauperate and highly similar to western populations. In contrast, if the ice cap was not complete and tree species persisted in forest patches on both slopes of the Andes (Multiple Refugia hypothesis), we would expect a greater degree of genetic divergence between populations either on opposite sides of the Cordillera (Cordillera Effect scenario) or towards its present‐day southern distributional limit where the ice sheet reached its maximum coverage (Extent‐of‐the‐Ice scenario). Location We tested this refugia hypothesis using patterns of isozyme variation in populations sampled over the entire modern range of the endemic conifer Fitzroya cupressoides (Mol.) Johnst. (Cupressaceae) in temperate South America. Methods Fresh foliage was collected from twenty‐four populations and analysed by horizontal electrophoresis on starch gels. Results Twenty‐one putative loci were reliably scored and 52% were polymorphic in at least one population. Populations from the eastern slope of the Andes were genetically more variable than those from the western slope; the former had a greater mean number of alleles per locus, a larger total number of alleles and rare alleles, and higher polymorphism. Genetic identities within western populations were greater than within eastern populations. Discriminant analyses using allelic frequencies of different grouping schedules of populations were non significant when testing for the Single Refugium hypothesis whereas significant results were obtained for the Multiple Refugia hypothesis. Main conclusions Our results indicate that present Fitzroya populations are the result of spreading from at least two, but possibly more, glacial refugia located in Coastal Chile and on the southern flanks of the Andes in Argentina.  相似文献   

11.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

12.
Climate changes can have fundamental impacts on the distributional patterns of montane species, and range shifts frequently lead to allopatric divergence followed by the establishment of secondary contact zones. Many European and North American organisms have retreated to southern refugia during glacial periods and colonized northward during postglacial periods, but little is known about the evolutionary response of cold‐adapted insects to Pleistocene climate changes in eastern Asia. The scorpionfly Dicerapanorpa magna (Chou), with cold temperate habitat preference and weak dispersal ability, provides a good model system to explore how climate changes have influenced the distribution and divergence of cold‐adapted insects in eastern Asia. This study reconstructed the demographic dynamics and evolutionary history of D. magna with phylogeographic approaches, and predicted the species’ suitable areas under the Last Glacial Maximum (LGM) and current scenarios with the ecological niche modelling analysis. The mitochondrial cytochrome c oxidase subunit I resolved three phylogenetic lineages in D. magna dating back to Pleistocene, corresponding well with the geographically isolated Qinling, Bashan and Minshan Mountains. The ecological niche modelling recovered the suitable habitats for D. magna were the Qinling and Bashan Mountains under LGM and current conditions. The three lineages of D. magna might be in a process of incipient speciation, and likely derived their current distribution from separate glacial origins, followed by vicariance and divergence.  相似文献   

13.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.  相似文献   

14.
15.
The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon‐dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5–16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.  相似文献   

16.
Y. QU  F. LEI  R. ZHANG  X. LU 《Molecular ecology》2010,19(2):338-351
Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. In contrast to Europe and North America where the effects of recent glacial cycles on genetic diversity have been well studied, the genetic legacy of the Pleistocene for the Qinghai‐Tibetan (Tibetan) plateau, a region where glaciation was not synchronous with the North Hemisphere ice sheet maxima, remains poorly understood. Here, we compared the phylogeographical patterns of five avian species on the Qinghai‐Tibetan plateau by three mitochondrial DNA fragments: the Tibetan snow finch (Montifringilla adamsi), the Blanford’s snow finch (Pyrgilauda blanfordi), the horned lark (Eremophila alpestris), the twite (Carduelis flavirostris) and the black redstart (Phoenicurus ochruros). Our results revealed the three species mostly distributed on the platform region of the plateau that experienced population expansion following the retreat of the extensive glaciation period (0.5–0.175 Ma). These results are at odds with the results from avian species of Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023–0.018 Ma). A single refugium was identified in a restricted semi‐continuous area around the eastern margin of the plateau, instead of multiple independent refugia for European and North American species. For the other two species distributed on the edges of the plateau (the twite and black redstart), populations were maintained at stable levels. Edge areas are located on the eastern margin, which might have had little or no ice cover during the glaciation period. Thus, milder climate may have mitigated demographic stresses for edge species relative to the extremes experienced by platform counterparts, the present‐day ranges of which were heavily ice covered during the glaciation period. Finally, various behavioural and ecological characteristics, including dispersal capacities, habitat preference and altitude specificity along with evolutionary history might have helped to shape different phylogeographical structures appearing in these five species.  相似文献   

17.
The climatic oscillations of the last glacial period have had profound influences on the demography and levels of genetic diversity of extant species. Molecular evidence of glacial effects on temperate species has been well documented, whereas little is known regarding that on subtropical species. Here we present analyses based on partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (1052 bp) and genotypes at 15 microsatellite loci to investigate the historical demography, population structure and ongoing gene flow of an undescribed fig‐pollinating wasp (Ceratosolen sp. 1) of Ficus septica in subtropical Taiwan. Reconstructed historical demography based on the coalescent tree of COI sequences suggests that C. sp. 1 has undergone a drastic population expansion which was tightly coupled with climatic changes since the last glacial maximum (LGM). The magnitude of the population size change was approximately 500‐fold, indicating that the population of this wasp and its host was likely highly compressed during the last glacial period. The lack of significant population differentiation (FST < 0.02, for all pairwise FST values) may be due to rapid postglacial expansion facilitated by long‐distance dispersal, although a low frequency of first‐generation migrants was detected. Our results clearly demonstrate how recent climatic changes since the LGM and dispersal ability have jointly shaped the genetic composition of a subtropical fig‐pollinating wasp.  相似文献   

18.
Few chloroplast‐based genetic studies have been undertaken for plants of mesic temperate forests in the southern hemisphere and fossil‐based models have provided evidence of vegetation history only at the broadest scales in this region. This study investigates the chloroplast DNA phylogeography of Tasmannia lanceolata (Winteraceae), a fleshy‐fruited, bird‐dispersed shrub that is widespread in the mountains of southeastern Australia and Tasmania. Thirty haplotypes were identified after sequencing 3206 bp of chloroplast DNA in each of 244 individuals collected across the species’ range. These haplotypes showed unexpectedly strong phylogeographic structuring, including a phylogeographic break within a continuous part of the species’ range, with the distribution of four major clades mostly not overlapping, and geographic structuring of haplotypes within these clades. This strong geographic patterning of chloroplast DNA provided evidence for the survival of T. lanceolata in multiple putative wet forest refugia as well as evidence for additional wet forest species refugia in southeastern Australia. In western Tasmania lower haplotype diversity below the LGM tree line compared to above the LGM tree line suggests that glacial refugia at high altitudes may have been important for T. lanceolata. The level of geographic structuring in T. lanceolata is similar to gravity dispersed southern hemisphere plants such as Nothofagus and Eucalyptus. Behavioural traits of the birds transporting seed may have had a strong bearing on the limited transport of T. lanceolata seed, although factors limiting establishment, possibly including selection, may also have been important.  相似文献   

19.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

20.
The leaf beetle genus Calligrapha is one of the few examples of animals with several obligate unisexual, female‐only species. Previous work showed that each one arose independently from interspecific hybridization events involving different species. However, all of them clustered in a single mtDNA clade together with some individuals of the parental bisexual species, which appeared as deeply polyphyletic in the mtDNA genealogy of the genus. The dating of these splits using a molecular clock placed them in the Quaternary and it was hypothesized that climatic change during this period may have favored range expansions and secondary contacts required for hybridization. In this work, we test this hypothesis and the origins of unisexuality in Calligrapha examining the diversity of mitochondrial (cox1) and nuclear (wingless, Wg) genes and the Bayesian continuous mtDNA phylogeography of a sample of more than 500 specimens of two bisexual species of Calligrapha at a continental scale and two unisexual species derived from them. Besides a major topological difference, whereby each bisexual species is monophyletic for Wg but paraphyletic for cox1, both gene datasets are consistent with a minimum of seven evolutionary lineages, coherent with geography and consistent with an ordered expansion to occupy their current ranges. The results also imply their survival in well‐established glacial refuges during the Last Glacial Maximum (LGM). Thus, for bisexual C. multipunctata there are two main, southern and northern lineages. The southern lineage expanded its range in two evolutionary branches, to the Rocky Mountains and to the northern Mississippi and Ohio River basins, respectively. The northern lineage has one branch in the Upper Mississippi and one that expanded west to the Pacific Northwest and east to the northeastern North Atlantic, finding refuge in both areas. These major lineages are parapatric in the Northern Great Plains, an area consistent with them having found refuge in the so‐called Driftless region during the LGM. For bisexual C. philadelphica, one northern lineage expanded west from the northern Appalachians and one east and southwest along the axis of the Appalachians, and the timing of events is consistent with their persistence in glacial refugia at both sides of the main Great Lakes lobe of the Laurentide Ice Sheet. There is evidence that the northeastern North Atlantic lineages of both species hybridized at the edge of their ranges after the LGM. The additional, divergent mtDNA lineage of these species shows evidence of range expansions of two lineages, one for each species, in an area south of the Laurentide Ice Sheet, and giving origin to the unisexual species by way of hybridization with other species in the Alleghanian region after the LGM. Interestingly, the individuals of supposedly bisexual species in this clade are all females. This suggests that unisexuality actually predates the origin of unisexual taxa in this system and that some bisexual species in Calligrapha may be species complexes instead, with cryptic species differing in their reproductive mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号